1.1 Proof．
－def．a series of convincing arguments that leaves no doubt that a given prison is tue －Manage \checkmark（1）motion \checkmark（3）logic \checkmark（1）detail \checkmark
－universally quantified statements

$$
\forall s \in S
$$

for all／for any the dom an

$$
\exists s \in S \quad Q(s)
$$

$P(s) \rightarrow$ symbol for a statement P
that depends on the variable $s \in S$
there exists
1.2 Set
－def．a well defined，unordered collection of distinct objects
－empty set $\phi=\{ \}$
$\mathbb{N}=\{1,2,3 \cdots\}$ 正整数
$\mathbb{Z}=$ all integers $\{\cdots,-1,0,1,2 \cdots\}$ 有明数 $\quad \forall \rightarrow$ 任行
$Q \rightarrow \frac{a}{b}(b \neq v)$ rational numbers 有理数 $\quad \exists \rightarrow$ 存在一个
$\mathbb{R}=$ real mimer
$C \rightarrow$ complex number

1．3 Statement
truth value of statement
判断 statement 正渎
－def a sentence that has definite state of being either true or false ex．$n \in \mathbb{N}, n^{2}+13$ isn＇t perfect square

$$
\begin{aligned}
& x,\left(n=6, n^{2}+13=49=7^{2}\right. \\
& \text { a counter example" }
\end{aligned}
$$

1．4．Quantifiers
－a sentence that contains a variable，where the truth of the sentence is determined by the value of variable
－We can turn an open sentence into a statement by adding a quantifier

$$
\begin{aligned}
& \text { ex. for all } x \in \mathbb{R} \quad x^{2}-x \geqslant 0 \\
& \text { quantifier variabledomain } \\
& \rightarrow \text { 可取任行一个教 } \\
& \text { open sentence }+ \text { 限判 }=\text { statement } \\
& -\neg(\exists x \in R . \quad \exists y \in R, \forall z \in \mathbb{N}, x y=z) \equiv(\forall x \in R \quad \forall y \in R \quad \exists z \in N \quad \neg x y=z) \\
& \forall x \in \mathbb{Z} \quad\left(x \geqslant 5 \Rightarrow 2^{x}>x^{2}\right)
\end{aligned}
$$

－Universal quantifier (\forall)（存机所有值）

$$
\text { ex. } \forall x \in \mathbb{R} \quad, x^{2}-x \geqslant 0 \quad x
$$

－Existential Quantifier（ \exists ）（只存在个别犆）$\underset{\sim}{\longrightarrow}$ there exists ex． 64 is perfect square $\rightarrow \exists k \in \mathbb{Z}, \quad 64=k^{2}$ －quantified statement

4部盆：© Quantifier（ $\forall, ~ \exists)$
Q variable
（ 3domain \rightarrow for every variable
（4）open sentence
＝universally quantified statement $\quad \forall x \in S, P(x)$
－Negating Universal quantifier $(\neg \forall)$

$$
\begin{aligned}
& \neg(\forall x \in S, P(x)) \equiv \exists x \in S, \neg P(x) \\
& \neg(\exists x \in S, P(x)) \equiv \forall x \in S, \neg P(x)
\end{aligned}
$$

ex．negate $\forall x \in \mathbb{R},|x|<5 . \rightarrow$ given $\exists x \in \mathbb{R},|x| \geqslant 5$ ．False
－Negating Existentid Quantifier $(\neg \exists)$
ex．negate $\exists x \in \mathbb{R},|x|<5 \rightarrow$ given $\forall x \in \mathbb{R},|x| \geqslant 5$ ．True

$$
\neg(\exists x \in S, f(x)) \equiv \forall x \in S, \quad \neg P(x)
$$

1.5 Nested quantifier (多1T paration)
(1) $\forall s \in R, \exists t \in \mathbb{R}, s>t$
(2) $\exists t \in R, \forall s \in \mathbb{R}$, $s>t$ different

$$
\begin{array}{llll}
\forall \varepsilon>0 & \exists \delta>0 & \forall x\left(\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-L|<\varepsilon\right) \\
(\forall \varepsilon>0) & (\exists \delta>0) & (\forall x \in \operatorname{dom} f) \quad\left(\left|x-x_{0}\right|<\delta \Rightarrow\right. & |f(x)-L|<\varepsilon)
\end{array}
$$

2．1 Teth Tables \＆Negation
－negation of statement arserts the exact opposite
ep．statement $\rightarrow(5<8)$ negation in $5 \geqslant 8$
－double negation（negation＂$]^{\prime \prime}$
$\neg(\neg A)$ is the same as A ．
$\neg(\neg A) \equiv A$ logically equivalent

2．2 Conjunction \＆Disjunction
需同时㺃久
－Conjunction（＝and）府多：Λ
Disjunction（dor）待当：V

A	B	$A \wedge B$	$\rightarrow(A \wedge B)$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	F	T

A	B	$A \vee B$	$\neg(A \vee B)$
T	T	T	F
T	F	T	F
F	T	T	F
F	F	F	T

$\neg A$	$\neg B$	$(\neg A) V(\neg B)$
F	F	F
F	T	F
T	F	F

2．3 DML
－De Morgan＇s Laws（DML）
1．$\neg(A \wedge B) \equiv(\neg A) \vee(\neg B)$
2．$\neg(A \vee B) \equiv(\neg A) \wedge(\neg B)$

Commutative Laws：
－$A \wedge B \equiv B \wedge A$
－$A \vee B \equiv B \vee A$

Associative Laws：
－$A \wedge(B \wedge C) \equiv(A \wedge B) \wedge C$
－$A \vee(B \vee C) \equiv(A \vee B) \vee C$
Distributive Laws：
－$A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$
－$A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$

- Distributive laws

Prove. $A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$

A	B	C	$B \vee C$	$A \wedge(B \vee C)$	$A \wedge B$	$A \wedge C$	$(A \wedge B) \vee(A \wedge C)$
T							
T	T	F	T	T	T	F	T
T	F	T	T	T	F	T	T
T	F						
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F							

2.4 Implication

- Implication $=$ if... then... 仿了 \Rightarrow

A	B	$A \Rightarrow B$
T	T	T
T	F	F
F	T	T
F	F	T

(A implies B)
A: hypothesis B:conchusion

- Negation of an implication law

$$
A \Rightarrow B \equiv \neg A \vee B \quad \neg(A \Rightarrow B) \equiv A \wedge \neg B
$$

Prove $A \Rightarrow B \equiv \neg A \vee B$:

$$
\begin{aligned}
A \Rightarrow B & \equiv \neg(\neg(A \Rightarrow B)) \\
& \equiv \neg(A \wedge \neg B) \\
& \equiv \neg A \vee \neg(\neg B) \\
& \equiv \neg A \vee B
\end{aligned}
$$

double negation mule negation of implication law P_{e} Morgan's low
double negation double negation
2.5 Converse and Contrapositive

- def. implication $B \Rightarrow A$ is the converse of $A \Rightarrow B$

A	B	$A \Longrightarrow B$	$B \Longrightarrow A$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

$$
A \Rightarrow B \equiv((\neg B) \Rightarrow(\neg A))
$$

τ contrapositive

- def implication $\rightarrow B \Rightarrow \neg A$ is the contrapositive of $A \rightarrow B$

Prove $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

$$
\begin{aligned}
A \Rightarrow B & \equiv \neg(\neg(A \Rightarrow B)) \\
& \equiv \neg(A \vee(\neg B)) \\
& \equiv \neg(B \wedge(\neg A) \\
& \equiv \neg(\neg B) \wedge \neg(\neg A)) \\
& \equiv \neg(\neg(\neg B) \Rightarrow(\neg A)) \\
& \equiv \neg B \Rightarrow \neg A
\end{aligned}
$$

double nog
neg of implication
CML

- Prove $(\neg(P \Rightarrow \neg Q) \neq(\neg P \Rightarrow Q)$
$f(P \Rightarrow \neg \theta)$ is P. $\neg P \Rightarrow \theta$ is T This establish that the 2 statements are not equavolent
- Prove $(A \vee \neg B) \Rightarrow \neg C \equiv \neg(C \neg A) \wedge(\neg C \vee B)$ $(A \vee \neg B) \Rightarrow \neg C \equiv \neg(\neg(L A \vee \neg B) \Rightarrow \neg C))$

negation of implication
$\equiv \neg(\subset \wedge A) \wedge(\neg \subset \vee B)$

$$
-(A \sim B) \Rightarrow C \equiv(A \Rightarrow C) \wedge(B \Rightarrow C)
$$

2. 6 If and Only if $(A \Leftrightarrow B)$

A	B	$A \Longleftrightarrow B$	$A \Longrightarrow B$	$B \Longrightarrow A$	$(A \Longrightarrow B) \wedge(B \Longrightarrow A)$
T	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T

Useful Tool Logical

De Morgan's Laws (DML)

- $\neg(A \vee B) \equiv \neg A \wedge \neg B$.
- $\neg(A \wedge B) \equiv \neg A \vee \neg B$.

Commutative Laws

- $A \vee B \equiv B \vee A$.
- $A \wedge B \equiv B \wedge A$.

Associative Laws

- $A \wedge(B \wedge C) \equiv(A \wedge B) \wedge C$.
- $A \vee(B \vee C) \equiv(A \vee B) \vee C$.

Distributive Laws

- $A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C)$.
- $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)$.

Some more properties

- $A \Rightarrow B \equiv \neg A \vee B \quad$ negation of implication
- $A \vee \neg A \equiv T$
- $A \wedge \neg A \equiv F$

3．1 Proving universally quantified statements
－Types of statitement
arbitrany 任意的
bypothesis 候及：（no enidence）

theorem 定理：a significant proposition
lemma 引理：＂辅助＂命迻
corollary 推论：由定理推导
contrapositive 对琞 conjecture 才龍樊

Implication 的常见结构

$$
\forall x \in D_{1}, \forall y \in D_{2} \cdots,[P(x, y, \cdots) \Rightarrow Q(x, y, \cdots)]
$$

没有 Variables 的时候，$A \Rightarrow B$ ，e．g．，if tomorrow is raining， I am going to SavvyUni for Math137．if（Hypothesis），then（Conclusion）
－Hypothesis $P(x, y, \cdots)$
－Conclusion $\theta(x, y, \cdots)$
－Converse if $\theta(x, y, \cdots)$ ，then $P(x, y, \cdots)$
－Inverse if $\neg P(x, y, \cdots)$ ，then $\neg \theta(x, y, \cdots)$
－Contraposositive if $\neg \theta(x, y, \cdots)$ ，then $\neg P(x, y, \cdots)$
－Negation $P(x, y, \cdots) \wedge \neg \theta(x, y, \cdots)$
－Condusion $Q(x, y, \cdots)$
－Converse if $\theta(x, y, \cdots)$ ，then $P(x, y, \cdots)$
－Inverse if $\neg P(x, y, \cdots)$ ，then $\neg \theta(x, y, \cdots)$
－Contra－positive if $\neg \theta(x, y, \cdots)$ ，then $\neg P(x, y, \cdots)$
－Negation $P(x, y, \cdots) \wedge+Q(x, y, \cdots)$

Let $x \cdot y \in \mathbb{Z}$ ．If x is even y is odd $\begin{gathered}\downarrow \\ \text { hypothesis } \quad \frac{\text { then } x+y \text { is odd }}{\downarrow} \text { condusion }\end{gathered}$
converse：if $x+y$ is odd，then x is even and y is odd
contraposifive：If $x+y$ is not odd，then x is not even or y is not odd
ex．There is a smallest natural muber
$\exists n \in \mathbb{N} \quad \forall m \in \mathbb{N} \quad n \leqslant m$
－$* D_{0}$ not assume what n trying to proof 洁论不待作为作级
＊Sonetimes it＇s easier to break up the domain．
ex．let $x \in \mathbb{R}$ frove $|x-3|+2|x+2| \geqslant 5$
＊注意extrancous solution 证完将值带入选中验证 ex． $\log x \quad(x$ 应＞0）者prove 出 $x<0$ m洁来，应ignore
－Disproving universally quantified statements
use counter example
proof $\begin{aligned} & \text { … true 直接证 } \\ & \cdots \text { false 证 } \neg(\cdots) \text { true }\end{aligned}$
－method
Proof：$\forall s \in S . P(s)$ Let $s \in S$ be arbitrary

3．2 Proving existentially quantified statements
－method
Proof：$\exists s \in S . P(s)$ 找一个冽子

3．3．Proving implications
－Proof：$P \Rightarrow \theta \quad$ Assume P is true use this assumption to show Q is true．
－Prof：$P \Leftrightarrow Q$ 要同时证明＂\Rightarrow＂与＂
ex．Proof $m \in \mathbb{Z}$ is even if and only if $7 m^{2}+4$ is even
$(\Rightarrow$ If m is even，$m=2 k$ for some $k \in \mathbb{Z}$ ）
then $7 m^{2}+4=7 \times(2 k)^{2}+4=2 \times\left(14 k^{2}+2\right)$ ，which is an even integer．
(\Leftrightarrow) Conversely，assume $7 m^{2}+4$ is even，and assume m is odd then， $7 \mathrm{~m}^{2}$ is also odd． $7 m^{2}+4$ is odd，which contradicts assumption．

3．4 Divisibility of integers
－$n=k \cdot m$
能整除 m is a divisor／factor of $n \quad m \mid n$
不能整除 写作 $m \nmid n$

- transitivity of divisibility (TD)
$\forall a . b . c \in \mathbb{Z}$, if $a|b \& b| c$, then $a \mid c$
Proof: Let a.b.c $\in \mathbb{Z}$ be arbitrary.
Now $b \mid c$ means $c=k b$ for some $k \in \mathbb{Z}$ $a \mid b$ means $b=m a$ for some $m \in \mathbb{Z}$
Then $c=k b=(k \cdot m) a$. Hence $a \mid c \operatorname{since} k m \in \mathbb{Z}$
$\forall a \cdot b . c \in \mathbb{Z}$. If $a \mid b$ or $a \mid c$, then $a \mid b c$

$$
(A \vee B \Rightarrow C) \equiv((A \Rightarrow C) \wedge(B \Rightarrow C))
$$

- divisibility of integer combinations (DIC)
$\forall a . b, c \in \mathbb{Z}$, if $a|b \& a| c$, then $\forall x, y \in \mathbb{Z}, a \mid(b x+c y)$
proof. Let $a \cdot b, c \in \mathbb{Z}$, and assume $a \mid b$ and $a \mid c$.
$a_{m}=b$ \& $a k=c$ given any $x \cdot y \in \mathbb{Z}$. We have $(b x+c y)=a(x m+y k)$
Hence $a \mid(b x+c y)$.
- converse of DIC
$\forall a . b, c \in \mathbb{Z}$. if $a \mid(b x+c y)$ for all integer $x \& y$, then $a \mid b$ \& $a \mid c$ Proof. Let a.b.c $\in \mathbb{Z}$
Assume al $(b x+c y) \quad \forall x \cdot y \in \mathbb{Z}$
Then this must be true when $x=1 . y=0$ So $a \mid(b \cdot 1+c \cdot 0) \therefore a / b$ Also, this is true when $x=0 \quad y=1$ So $a|(b \cdot 0+c \cdot 1) \quad \therefore a| c$ Therefore alb. and a / c
ex. Proof. For all $a \cdot b \cdot c \in \mathbb{Z}$, if $a \mid(b+c)$ and $a \mid(3 b+c)$, then alb and $a \mid c$ is wrong
Let $a . b, c \in \mathbb{Z}$. Assume that $a \mid(b+c)$ and $a \mid(3 b+c)$ $\because D \tau C . \therefore a \mid x(b+c)+y(3 b+c)$ for any $x \cdot y \in \mathbb{Z}$
Take $x=-1, y=1$, we get $a|-(b+c)+(3 b+c) \Rightarrow a| 2 b$
Take $x=-3, y=1$ we get al-2c
3.5 Proof by Contrapositive
－若证 $A \Rightarrow B$ ，replace with＂$(\neg B) \Rightarrow(\neg A)$
assume $\neg B$ true，$\neg A$ also true．
证明 $(\neg B) \Rightarrow(\neg A)$ true
ex．$\forall x \in \mathbb{R} . \quad x^{2}-7 x+10 \geqslant 0 \Rightarrow x \leqslant 3$ or $x \geqslant 4$
保 $A \Rightarrow B$ true
Prove by contrapositive：$\quad 3<x<4 \Rightarrow x^{2}-7 x+10<0$

$$
\begin{aligned}
& x^{2}-7 x+10=(x-2)(x-5) \\
& \because x>3 \quad x-3>0 \quad \therefore x-2=(x-3)+1>0 \\
& \because x<4 \quad x-4<0 \quad \therefore x-5=(x-4)-1<0
\end{aligned}
$$

Since the contrapositive is tine，the original implication is true．$Q E D$

3．6 Proof by Contradiction 反证法
A is statement．$A 与 \neg A$ 一定有一个销添
$A \wedge(\neg A)$ always false．＂$A \wedge(\neg A)$ is true＂is contradiction
ex．Prove $\sqrt{2}$ is irrational

$$
\text { 证 } \neg \underset{\downarrow}{A} \text { false }
$$

Prove by contradiction：Suppose $\sqrt{2} \in \mathbb{Q}$ ，得 A true
We have $\sqrt{2}=\frac{a}{b}(a \cdot b \in \mathbb{Z}, b \neq 0, a \cdot b$ 互质 $)$
$2=\frac{a^{2}}{b^{2}} \quad a^{2}=2 b^{2} \rightarrow a$ is even．let $a=2 k$
$4 k^{2}=2 b^{2} \quad b^{2}=2 k^{2} \rightarrow b$ is also even．
a \＆b both even contradicts to $a \cdot b$ relatively prime
The contradiction is false．So，the statement is twee
－$A \Rightarrow B \equiv \neg A \vee B$ negation of implication

3．7 Proof＂If \＆Only if＂Statement

$$
-A \Leftrightarrow B \equiv(A \Rightarrow B) \wedge(B \Rightarrow A)
$$

ex．Let $n \in \mathbb{Z}$ ，prove $2 \mid\left(n^{4}-3\right)$ if and only if $4 \mid\left(n^{2}+3\right)$ 证 $A \Leftrightarrow B$ true Prove：需证 $A \Rightarrow B$ true．$B \Rightarrow A$ true
\Leftrightarrow D If $n=2 k$ for some k lie n is even），then $n^{4}-3=16 k^{4}-3$ which is oil $2 \mid\left(n^{4}-3\right)$ is always false， $2\left|\left(n^{4}-3\right) \Rightarrow 4\right|\left(n^{2}+3\right)$ is true
（8）If $n=2 k+1$ for some k ，then $n^{4}-3=16 k^{2}+32 k^{3}+24 k^{2}+8 k-2$

$$
n^{2}+3=4 k^{2}+4 k+4=4\left(k^{2}+k+1\right) \text { divisible by } 4 \text {. }
$$

(\Leftrightarrow) Conversely，if $4 \mid\left(n^{2}+3\right)$ ，we cant have n to be even（otherwise we get $n^{2}+3$ is odd， and hence $4 f\left(n^{2}+3\right)$
－Prove or disprove
（1）if $2 \nmid x y$ ，then $2 \nmid x$ \＆ $2 \nmid y \quad$ Time
（2）if $2 x y$ and $2 \neq x$ then $2 x x y$ ． contradiction． $2 \mid x y \Rightarrow 21 y$ or $2 \mid x$

If for all ．．．．，then… 仅需要举一个正确剧子。

Proof by elimination

$$
\begin{aligned}
A \Rightarrow(B \cup C) & \equiv(A \wedge \neg B) \Rightarrow C \\
& \equiv(A \wedge \neg C) \Rightarrow B
\end{aligned}
$$

4.1 Notations

- Proving uniqueness
ex. pore that for any odd $n \in \mathbb{Z}$, there exists a unique $m \in \mathbb{Z}$, t $n^{2}=8 m+1$ proof. Let $n=2 k+1$ be and odd integer, where $k \in \mathbb{Z}$.

Then $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=8 \times \frac{k(k+1)}{2}+1$
Either k or $k+1$ is even integer, $\frac{k(k+1)}{2} \in \mathbb{Z}$.
4.2 Proof by Mathematical Induction POMI

- POME

Let $P(n)$ be a statement deparaly on n.
If $\quad \begin{array}{ll}p(1) \\ \forall k \in N\end{array}$ is true $\left.\quad p(k) \rightarrow p(k+1) \quad\right\}$ inductive step
Then $\forall n \in \mathbb{N}, P(n)$ is true
ex. proof $n \in \mathbb{N}, n \geq 5 \quad 2^{n}>n^{2}$
proof, we proceed by induction on n.
Base case: At $n=5$, we have $2^{n}=2^{5}=32$, and $n^{2}=5^{2}=25$
Inductive Step: Let $k 25$. $(k \in \mathbb{N})$. The statement holds at $k, \rightarrow 2^{k}>k^{2}$.
Assume induction lypptlesis: $2^{k+1}>(k+1)^{2}$.
$\begin{aligned} & 2^{k+1}=2 \times 2^{k}>2 k^{2} \\ & k^{2}+k^{2}\end{aligned} \quad$ lemma : $\forall m \in \mathbb{N}$, if $m \geqslant 3$, then $m^{2} \geqslant 2 m+1$
proof: Base case: At $m=5$, we have $m^{2}=9>7=2 m+1$
Inductive step: Let $m \geqslant 3$ be arbittray. Assume $m^{2} \geqslant 2 m+1$, then.

$$
(m+1)^{2}=m^{2}+2 m+1 \geqslant(2 m+1)+(2 m+1)>2(m+1)+1 .
$$

By pome. the statement is true for all $m 23$
［6］5．Use induction to prove that for every integer $n \geq 7$ ，

$$
\sum_{i=7}^{n} i=\frac{n(n+1)}{2}-21
$$

Proof．We begin by formally writing out our inductive statement

$$
P(n): \sum_{i=7}^{n} i=\frac{n(n+1)}{2}-21
$$

Base Case We verify that $P(7)$ is true where $P(7)$ is the statement
证 第一项 the

$$
P(7): \sum_{i=7}^{7} i=\frac{7(7+1)}{2}-21
$$

The left hand side evaluates to $\sum_{i=7}^{7} i=7$ and the right hand side evaluates to $\frac{7(7+1)}{2}-21=28-21=7$ so $P(7)$ holds．
Inductive Hypothesis We assume that the statement

$$
\text { Assume } P \text { uk) twe } P(k): \sum_{i=7}^{k} i=\frac{k(k+1)}{2}-21
$$

is true for some integer $k \geq 7$ ．
Inductive Conclusion Now we show that the statement $P(k+1)$ is true．That is，we show

$$
\text { 证 } P(k+1) \text { twe } P(k+1): \sum_{i=7}^{k+1} i=\frac{(k+1)(k+2)}{2}-21
$$

Now

$$
\begin{array}{rlr}
\sum_{i=7}^{n} i & =\left[\sum_{i=7}^{k} i\right]+[k+1] & \text { (partition into } P(k) \text { and other) } \\
& =\left[\frac{k(k+1)}{2}-21\right]+[k+1] & \text { (Inductive Hypothesis) } \\
& =\frac{k(k+1)+2(k+1)}{2}-21 & \text { (arithmetic) } \\
& =\frac{(k+1)(k+2)}{2}-21 & \text { (factor) }
\end{array}
$$

The result is true for $n=k+1$ ，and so holds for all n by the Principle of Mathematical Induction．
4.3 Binomial Theorem

- Summations
(1) $\sum_{i=m}^{n} x_{i}=x_{m}+x_{m+1}+\cdots+x_{n}$
(2) $\sum_{i=1}^{m} c x_{i}=c \sum_{i=1}^{m} x_{i}$
(3) $\sum_{i=1}^{m}\left(x_{i}+y_{i}\right)=\sum_{i=1}^{m} x_{i}+\sum_{i=1}^{m} y_{i}$
- Products

$$
\prod_{i=1}^{n} x_{i}=x_{1} x_{2} \cdots x_{n}
$$

ex. ii $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(n+2)}{6}$
Prove by induction
Base case: $n=1 \quad \sum_{i=1}^{1} i^{2}=\frac{1 \times 2 \times 3}{6}=1$
Induction: Assume $\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(k+2)}{6}$ for some $k \geqslant 1 \quad(k \in \mathbb{Z})$

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =(k+1)^{2}+\sum_{i=1}^{k} i^{2} \\
& =(k+1)^{2}+\frac{k(k+1)(k+2)}{6} \\
& =(k+1)\left(\frac{6(k+1)+k(2 k+1)}{6}\right) \\
& =\frac{k+1}{6}\left(2 k^{2}+7 k+6\right) \\
& =\frac{k+1}{6} \times(2 k+3)(k+2) \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
\end{aligned}
$$

- Binomial series

$$
\begin{aligned}
& (a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n} \quad(n \in \mathbb{N}) \\
& \text { where }\binom{n}{r}={ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!} \\
& (1+x)^{n}=1+n x+\frac{n(n-1)}{1 \times 2} x^{2}+\ldots+\frac{n(n-1) \ldots(n-r+1)}{1 \times 2 \times \ldots \times r} x^{r}+\ldots(|x|<1, n \in \mathbb{R})
\end{aligned}
$$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

"n choose k"

- Pascal's Identity

For all positive $n, m \in \mathbb{Z} . \quad m<n . \quad\binom{n}{m}=\binom{n-1}{m}+\binom{n-1}{m-1}$

$$
\begin{aligned}
\binom{n-1}{m-1}+\binom{n-1}{m} & =\frac{(n-1)!}{(n-m)!(m-1)!}+\frac{(n-1)!}{(n-m-1)!m!} \\
& =\frac{(n-1)!m+(n-1)!(n-m)}{(n-m)!m!} \\
& =\frac{(n-1)!n}{(n-m)!m!} \\
& =\frac{n!}{(n-m)!m!} \\
& =\binom{n}{m}
\end{aligned}
$$

- Binomial Theorem 1

For all integers $n \geqslant 0$ and all real number x. $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{k}$
Proof.
We proceed by induction on n.
Base case : At $n=1,(a+b)^{\prime}=a+b=\binom{0}{1} a^{\prime} b^{0}+\binom{1}{1} a^{0} b^{\prime}=\sum_{k=0}^{1}\binom{k}{1} a^{1-k} b^{k}$
Inductive step: Assume the statement holds at $n \geqslant 0$ and lot us use this to prove it holds at $n+1$

$$
\begin{aligned}
(1+x)^{n+1} & =(1+x)(1+x)^{n}=(1+x) \sum_{k=0}^{n}\binom{n}{k} x^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k}+x \sum_{k=0}^{n}\binom{n}{k} x^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k}+\sum_{k=0}^{n}\binom{n}{k} x^{k+1} \quad \text { let } k+1=j \quad k=j-1 \\
\Rightarrow & =\sum_{k=0}^{n}\binom{n}{k} x^{k}+\sum_{j=1}^{n+1}\binom{n}{j-1} x^{j} \\
& =\binom{n}{0} x^{0}+\sum_{k=1}^{n}\binom{n}{k} x^{k}+\sum_{j=1}^{n}\binom{n}{j-1} x^{j}+\binom{n}{n} x^{n+1} \quad \text { let } j=k \\
\Rightarrow & =\binom{n}{0} x^{0}+\sum_{k=1}^{n}\binom{n}{k} x^{k}+\sum_{k=1}^{n}\binom{n}{k-1} x^{k}+\binom{n}{n} x^{n+1} \\
& =\binom{n}{0} x^{0}+\sum_{k=1}^{n}\left[\binom{n}{k}+\binom{n}{k-1}\right] x^{k}+\binom{n}{n} x^{n+1} \\
& =\binom{n}{0} x^{0}+\sum_{k=1}^{n}\binom{n+1}{k} x^{k}+\binom{n}{n} x^{n+1} \\
& =\binom{n+1}{0} x^{0}+\sum_{k=1}^{n}\binom{n+1}{k} x^{k}+\binom{n+1}{n+1} x^{n+1} \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} x^{k}
\end{aligned}
$$

POMI. (principal of mathematical induction) $P(a) \Rightarrow P(a+1)$
－Binomial Theorem 2
For any $a \cdot b \in \mathbb{R}$ ，and any won－negative $n \in \mathbb{Z}$

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Proof：case l（ $a=0$ ）：

$$
(a+b)^{n}=b^{n} \text {, and } \sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}=\binom{n}{0} \times 1 \times b^{n}=b^{n}
$$

case $2(a \neq 0)$ ：

$$
\begin{aligned}
(a+b)^{n} & =a^{n}\left(1+\frac{b}{a}\right)^{n}=a^{n} \sum_{k=0}^{n}\binom{n}{k}\left(\frac{b}{a}\right)^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} a^{n} \frac{b^{k}}{a^{k}} \\
& =\sum_{k=0}^{n}\binom{n}{k} b^{k} a^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
\end{aligned}
$$

4．4 Principle of Strong Induction POSI
－if $\left\{\begin{array}{l}p(1) \text { is time } \\ \text { For an arbitrary } k \geqslant 0, p(1) \wedge p(2) \wedge \cdots \wedge p(k) \Rightarrow p(k+1)\end{array}\right.$ Then $P(n)$ is true for any n ．
－Prove by Strong induction
－写 base case（后面需要几个写几个）
（2）IS．Assume $P(x)$ is tie for $x=1,2 \ldots, k \in$ 点要的值
Then $p(x+1) \cdots$
ex．Suppose $x_{1}=3 \quad x_{2}=5 \quad$ ．．．$x_{n}=3 x_{n-1}+2 x_{n-2}$ for $n \geqslant 3$ ．
Prove $x_{n}<4^{n}$ for all positive integers n ．
Proof：By induction on n ．
Let $p(n)$ be the open sentence．$X_{n}<4^{n}$

Base case：Prove $P(1)$ and $P(2)$
$x_{1}=3$ and $4^{\prime}=4 \quad$ So $x_{1}<4^{\prime} \quad P(1)$ is true
$x_{2}=5$ and $\psi^{2}=16$ ．So $x_{2}<4^{2}$ ．$P(2)$ is true
Inductive Step：Let k be an arbitrary natural number
Assume $P(i)$ is time for all integers $i, 1 \leqslant i \leqslant k$

$$
\begin{aligned}
& \Rightarrow x_{i}<4^{i} \text { for } i=1,2, \ldots k \\
& \text { Let's prove } p(k+1) \quad x_{k+1}<\psi^{k+1}
\end{aligned}
$$

By recursive definition，

$$
\begin{aligned}
x_{k+1}=3 x_{k}+2 x_{k-1} & <3 \times 4^{k}+2 \times 4^{k-1} \\
& =4^{k-1}(3 \times 4+2) \\
& =14 \cdot 4^{k-1}<16 \times 4^{k-1} \\
& =4^{k+1} .
\end{aligned}
$$

$\therefore P(k+1)$ is twee so $P(n)$ is the for all $n \in \mathbb{N}$ ．by POSI
二进制

$$
\underbrace{13}_{\substack{\downarrow \\|10|}}=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
$$

Prove every positive integer n can be expessed as a sum of distinct non－negative powers of 2
Base Case：At $n=1$ ，we have $1=2^{\circ}$ ．which establishes the result in this case Inductive Step：Let $k \geqslant 1$ be arbitrary，and assume the statement holds for all numbers $\leq k-1$

Case 1：k is odd．$k-1$ is even， 2^{0} is not present in this sum．

$$
\begin{aligned}
& k-1=\alpha_{t} 2^{t}+\alpha_{t-1} 2^{t-1}+\cdots+\alpha 2^{1} \quad \alpha_{i} \in\{0,1\} \text {. for all } 1 \leq i \leq t \quad t \in \mathbb{N} . \\
& k=\alpha_{t} 2^{t}+\alpha_{t-1} 2^{t-1}+\cdots+\alpha 2^{1}+2^{0} .
\end{aligned}
$$

Case 2：k is even．
By induction hypothesis $\frac{k}{2}$ can be written as a sum of district won－negative power of 2
[6] 6. Let the sequence $\left\{x_{i}\right\}$ be defined by

- $x_{0}=3, x_{1}=2$, and
- $x_{n}=3 x_{n-1}-2 x_{n-2}$.

Prove that $x_{n}=4-2^{n}$ for all integers $n \geq 0$.
Proof. We will use Strong Induction. Our statement $P(n)$ is

$$
P(n): x_{n}=4-2^{n}
$$

Base Case We verify that $P(0)$ and $P(1)$ are true.

$$
P(0): x_{0}=4-2^{0}
$$

From the definition of the sequence $x_{0}=3$. The right side of the statement $P(0)$ evaluates to 3 so $P(0)$ is true.

$$
P(1): x_{1}=4-2^{1}
$$

From the definition of the sequence $x_{1}=2$. The right side of the statement $P(1)$ evaluates to 2 so $P(1)$ is true.
Inductive Hypothesis We assume that the statement $P(i)$ is true for $1 \leq i \leq k, k \geq 1$.

$$
P(i): x_{i}=4-2^{i}
$$

Inductive Conclusion Now we show that the statement $P(k+1)$ is true.

$$
P(k+1): x_{k+1}=4-2^{k+1}
$$

$$
\begin{aligned}
x_{k+1} & =3 x_{k}-2 x_{k-1} & \text { (by the definition of the sequence) } \\
& =3 \cdot\left(4-2^{k}\right)-2 \cdot\left(4-2^{k-1}\right) & \text { (by the Inductive Hypothesis) } \\
& =12-3 \cdot 2^{k}-8+2^{k} & \text { (expand) } \\
& =4-2 \cdot 2^{k} & \\
& =4-2^{k+1} &
\end{aligned}
$$

The result is true for $n=k+1$, and so holds for all n by the Principle of Strong Induction.

5．1 Introduction of Sets
\nmid 宅集
$\{\phi\}$ a set with ouly element is ϕ
｜S｜指 δ 里有多少项

$$
\begin{aligned}
& \text { ex. } A=\{1,2,3,4\} \quad|A|=4 \\
& \therefore|\phi|=0 \quad|\{\phi\}|=1
\end{aligned}
$$

5．2 Set－builder Notation
－Set－builder Notation Typel

$$
S=\{x \in U: P(x)\}
$$

all element from universe such that every dement follows $P(x)$锊
ex．$\{n \in \mathbb{N}: n \mid 12\}=\{1,2,3,4,6,12\}$ ．

$$
\{n \in \mathbb{Z}: 2 \mid n\} \rightarrow \text { 所有偶数的集合 }
$$

－Set－builder Notation Typez．

$$
S=\{f(x): x \in \Omega\}
$$

指 S 为 $f(x)$ 里的每一个项，且x存在于集合U 中
ex．$\left\{\mathfrak{l}_{k}: k \in \mathbb{Z}\right\} \rightarrow$ 所有偶数的集合
－Set－builder Notation Type 3

$$
S=\{f(x): x \in U, p(x)\}
$$

指S为 $f(x)$ 里的每一个项，且x存在于第合U州，$P(x)$ 炎对的

5．3 Set Operations

交集union
并采 intersection
差集 Set－difference
补集 complement
子集 subset

$$
\begin{align*}
& S \cup T=\{x \in U: x \in S \quad v \quad x \in T\} \tag{88}\\
& S \cap T=\{x \in U=x \in S \wedge x \in T\} \tag{57}\\
& S-T=\{x \in U: x \in S \wedge x \notin T\} \\
& \bar{S}=\{x \in U: \quad x \notin S\} \\
& S \subseteq T \\
& \begin{array}{l}
\text { Let } \dot{\mathcal{U}}=\{1,2,3,4,5,6,7,8,9,10\}, C=\{3,5,7,10\} \text {, and } \\
D=\{1,3,6,7, \text {, }\} \text {. }
\end{array} \\
& \text { Calculate } \\
& \text { ex. 1. } C \cup D=\{1,3,5,6,7,8,10\} \\
& \text { 2. } C \cap D=\{3,7\}, \\
& \text { 4. } D-C=\{1,6,8\} \\
& \text { 5. } \bar{C}=\{1,2,4,6,8,9\} \\
& \begin{array}{l}
\text { 6. }\{x \in \mathcal{U}:(x \in D) \Longrightarrow(x \in C)\}=\{2,3,4,5,7,9,10\} \text {. } \\
\text { 7. }|D-C|=3
\end{array}
\end{align*}
$$

5． 4 Subsets of a set
－def．subsets
S is a subset of sot T ，符作 $S \leq T$ ．
$\equiv T$ is a cuperset of S
S is a popper subset of set T 景作 $S \subseteq T$
三满只 subset．但 $S \neq T$
ex．$A \& B$ are stets．Prove $A-(A-B) \subseteq A \cap B$
Lot $x \in U$
Assume $x \in A-(A-B) \quad$ So $x \in A \wedge x \notin(A-B)$

$$
\begin{aligned}
& \equiv x \in A \wedge(\neg x \in(A-B)) \\
& \equiv x \in A \wedge(1(x \in A \wedge x \notin B)) \\
& \equiv x \in A \wedge(x \notin A \vee x \in B)
\end{aligned}
$$

Since $x \in A$ is time $x \notin A$ is false $x \in B$ is the Thus $x \in(A \cap B) \quad A-(A-B) \subseteq A \cap B$
－def．Set equality．
We say two sots $S \& T$ are equal．等作 $S=T$ 相同元素

6．1 The division algorithm
－Bounds by divisibility（BBDD）
Proposition $\quad \forall x \in \mathbb{R} \quad x \leq|x| \quad(*)$
For all integers $a \& b$ ．if $b \mid a$ and $a \neq 0$ ，then $b \leq|a|$
proof：Let $a \& b$ be any integers．Assume $a \neq 0$ and $|\mid a$ ．
Then $a=q b$ for 非 0 整攻 q ．

$$
\Rightarrow|q|=1 \quad \text { So }|a|=|q b|=|q||b| \geqslant 1 \cdot|b| \geqslant b
$$

－The division algorithm（DA）
$\forall a \cdot b \in \mathbb{Z}, \exists q r \in \mathbb{Z} .(q \neq r)$ st $a=q b+r \quad 0 \in r<b$
ep $a=47 \quad b=16 \Rightarrow 47=2 \times 16+15$
prof：by contradiction
For uniqueness，assume there exist $q_{1}, q_{2}, r_{1}, r_{2} \in \mathbb{Z}$ ．
where $0 \leqslant r_{1}<b \wedge 0 \leqslant r_{2}<b$ ．sit $q_{1} b+r_{1}=a=q_{2} b+r_{2}$

$$
\Rightarrow 0=\left(q_{1}-q_{2}\right) b+\left(r_{1}-r_{2}\right)
$$

we have $\left.\begin{array}{c}0 \leq r_{1}<b \\ -b<-r_{2} \leqslant 0 \\ b\end{array}\right\}-b<\left(r_{1}-r_{2}\right)<b \quad$（

$$
\begin{aligned}
& \left.\because \quad \therefore b\left|\left(r_{1}-r_{2}\right) . \quad b \leq\right| r_{1}-r_{2}\right) \\
& \because \quad \therefore\left|r_{1}-r_{2}\right|<b \quad \text { contradicts }
\end{aligned}
$$

So $r_{1}-r_{2}=0 \quad r_{1}=r_{2}$
Finally，put $r_{1}=r_{2}$ in $(*)$

$$
\begin{aligned}
& 0=\left(q_{1}-q_{2}\right) b+0 \\
& \because b>0, \quad q_{1}-q_{2}=0 \quad q_{1}=q_{2}
\end{aligned}
$$

So，q \＆r are unique

6．2 The greatest common divisor（gad）
－GCD The greatest common divisor 最大公因数
definition：$a . b \neq 0$ ．存在 gcd：d $\quad(d \in \mathbb{N}\rangle$
O $d \mid a$ \＆$d \mid b$ ．
（2）if c is any other divisor，then $c \leqslant d$

$$
\text { * If } a=0=b . \quad \operatorname{gcd}(0,0)=0 \quad \operatorname{gcd}(0,15)=15 \quad \operatorname{gcd}(-3,0)=3
$$

－GCD with remainders（GCDWR） $0 \leqslant r<b$
$\forall a . b . q . r \in \mathbb{N}$ ．if $a=q b+r$ ．then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$ ．
ex． $\operatorname{gcd} L 72,40) * b \& v$ 没有限判

$$
\begin{aligned}
& 72=1 \times 40+32 \\
& \therefore \operatorname{gcd} 172,40)=\operatorname{gcd}(40,32) \text { by } \operatorname{gcd} W R \\
& 40=1 \times 32+8 \\
& \therefore \operatorname{gcd}(40,32)=\operatorname{gcd}(32,8) \text { by } \operatorname{gcd} \text { ur } \\
& 32=4 \times 8 \\
& \therefore \operatorname{gcd}(32,8)=\operatorname{gcd}(8,0) \text { by } \operatorname{gcd} \text { UR } \\
& \therefore \operatorname{gcd}\left(72,4^{2}\right)=\operatorname{gcd}(8,0)=8 \\
& \text { ex. } \operatorname{gcd}(39751,13081) \\
& 39751=3 \times 13081+508 \\
& \therefore \operatorname{gcd}(39751,13081)=\operatorname{gcd}(13081,508) \text { by } \operatorname{gcd} \operatorname{Wr} \\
& 13081=25 \times 508+381 \\
& \therefore \operatorname{gcd}(13081,508)=\operatorname{gcd}(5008,381) \quad \text { Lb } \operatorname{gcd} \text { Wm } \\
& 508=1 \times 381+127 \\
& \therefore \operatorname{god}(508,381)=\operatorname{god}(381,127) \quad \text { by } \operatorname{god} W R \\
& \begin{aligned}
381= & 3 \times 127+0 \\
& \therefore \operatorname{god}(381,127)=\operatorname{god}(127,0) \quad \text { by } \operatorname{gcd} w R
\end{aligned} \\
& \therefore \operatorname{gcd}(39751,13081)=\operatorname{gcd}(127,0)=127
\end{aligned}
$$

The process with gad WR is called＂Euclidean Algorithm＂ EA 在得到。的时候洁束

Proof：
Let $a=q b+r . \quad d=\operatorname{ged}(a, b)$ ．Let＇s show $d=\operatorname{gcd}(b, r)$
Weill need to show
（1）dIb \＆$\left.d\right|_{r} \quad(d$ is a common divisor）
（2）If $a|b \& c| r$ then $c \leqslant d \quad(c$ 为一个因数）
prof © ：
也可证 $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(b, r)$
$d \mid b \quad \operatorname{Sin} a \quad d=\operatorname{gcd}(a, b)$且 $\operatorname{gcd}(b, r) \mid \operatorname{gcd}(a, b)$
$\because d|a \& d| b . \therefore B y$ DIU $\quad d \mid a \times 1+b \times(-q)=r$
别西者相等
proof（2）：
assume $c \mid b$ \＆$c \mid r$ ．By $D \tau C . \quad c \mid q \cdot b+1 \cdot r=a$ ．
$\therefore c|a \& c| b$ ．Sin $d=\operatorname{gcd}(a, b) \quad c \leqslant d$
ex．Let $a . b \in \mathbb{Z}$ ．Prove $\operatorname{gud}(3 a+b, a)=\operatorname{god}(a, b)$
Proof．Let $a . b \in \mathbb{Z}$

$$
3 a+b=3 \times a+b
$$

So ged $(3 a+b, a)=\operatorname{god}(a, b)$ by $G C D W R$
ex．use Endidean Algorithm and back substitution to find integers s．t

$$
\text { sit } 481 s+1053 t=\operatorname{gcd}(481,1053)
$$

$1053=2 \times 481+91$
$481=5 \times 91+26$
$91=3 \times 26+13$
$26=2 \times 13+0$

$$
\begin{aligned}
13 & =91-3 \times 26 \\
& =91-3 \times(481-5 \times 91) \\
& =16 \times 91-3 \times 481 \\
& =16 \times(1053-2 \times 481)-3 \times 481 \\
& =481 \times(-35)+1053 \times 16
\end{aligned}
$$

$\therefore S=-35 . \quad t=16$ ．
\therefore by EA， $\operatorname{gcd}(481,-1-3)=13$
6.3 Certificate of correctness and Bézout's Lemma
 $\forall a . b . d \in \mathbb{Z} \quad d>0$
If $d \mid a$ and $d \mid b$ and $\exists s . t \in \mathbb{Z}$ as $+b t=d$ Then $d=\operatorname{gcd}(a, b)$
proof: let $a \cdot b . d \in \mathbb{Z} . d>0 \quad \exists$ s.t $\in \mathbb{Z}$. s.t. as $+b t=d$
case 1: $a \neq 0$ or $b \neq 0$.

$$
\begin{aligned}
& a \neq 0.0 r b \neq 0 . \\
& \text { assume } \exists \text { s.t. } \quad a s+b t=d \neq 0
\end{aligned}
$$

prove: c is arbitrary sit $\mathcal{C l a} \wedge C \mid b$, when $\exists x=3, y=t$
by DIC. $\quad c \mid(a \cdot s+b t)=d$
$c|d \Rightarrow B B D \Rightarrow c \leq|d|, \quad c \leq d$
$\rightarrow c \geqslant d \quad \therefore c=d$
case 2: $a=b=0$.
assume \exists s. $t \in \mathbb{N}$. s.t. $\quad a s+b t=d=0$

$$
\begin{aligned}
& \because 0 s+0 t=0 . \quad 0 / 0 . \quad \therefore d / a \quad d \mid b \\
& \because \operatorname{gcd}(0,0)=0 . \quad \therefore d=\operatorname{gcd}(a, b)
\end{aligned}
$$

* $a, b \in \mathbb{Z}$. if $\operatorname{gcd}(a, b) \neq 0$, and $\exists x, y \in \mathbb{Z}$. Set $a x+b y=\operatorname{gcd}(a, b)$ then $\operatorname{gcd}(x, y)=1$
proof. Let $d=\operatorname{gcd}(a, b)=a x+b y$. So, $d|a . d| b$.
Let $\exists m, n \in \mathbb{Z} \quad a=d_{m} \quad b=d_{n}$
Then $d=d_{m} x+d n y \quad m x+n y=1$

$$
\begin{aligned}
& \because \operatorname{GCP} C T . \quad \underline{a s}+\underline{b} t=d \Rightarrow d=\operatorname{gcd}(a, b) \\
& \therefore \operatorname{gcd}(x, y)=1
\end{aligned}
$$

ex．Let $n \in \mathbb{Z}$ ，prove god $(n, n+1)=1$ ．
Proof：
def．
Let $n \in \mathbb{Z}$
$\because n \& n+1$ are convective integers．
$\therefore n \& n+1$ are positive netegers．
Suppose $u_{n} . u_{n+1}$
by Dec．$c \mid(n+1) \times 1+n \times(-1) \quad$ so 41 ．
Therefore，$c=1$ or $c=-1$ ．
In both cases，$c \leq 1$ ．So $\operatorname{gcd}(n, n+1)=1$ ．by def．
GED UR GOD CT

$$
n+1=1 \times n+1
$$

$\therefore \operatorname{gcd}(n+1, n)=\operatorname{gcd}(n, 1)$
$n=1 \times n+0 \quad \therefore \operatorname{gcd}(n, 1)=\operatorname{gcd}(1,0)=1$
$(n+1) \times 1+n \times(-1)=1$
$1 \mid n+1 \& \| n \& 1 \geqslant 0$
$\therefore \operatorname{gcd}(n+1, n)=1$ by $G C D W R$
So by GCDCT． $\operatorname{gcd}(n, n+1)=1$
－Bézont＇s Lemma（BL）
$\forall a \cdot b \in \mathbb{Z}$ ．if $d=\operatorname{gcd}(a, b)$ ，then \exists s．t $\in \mathbb{Z}$ sit．$a s+b t=d$
$L G C D C T$ \＆BL almost converse）
－Extended Euclidean Algorithm（EEA）
$a . b \in \mathbb{Z}, \quad a \geqslant b>0$ output $\operatorname{gcd}(a, b)$ and integer $x \& y$ ．
s．t $a x+b y=\operatorname{gcd}(a, b)$ in one pass

x	y	r	余数
1	0	商	
0	1	b	0
$1-0 \times 0$	$0-1 \times 0$	0	余数

当余数二人时 stop
然后跟据上一行 $a x+b y=\operatorname{gcd}(a, b)$ $=L-$ 行的 r
ex．计算 $\operatorname{gad}(56,35)$
Find integer $x \cdot y$ ，3．t $36 x+35 y=\operatorname{gcd}(56,35)$

－So $56 \times 2+35 \times(-3)=7$
$7=\operatorname{gcd}(56,35)$
＊若 $a<b$ ．
$b y+a x=\operatorname{gcd}(b, a) \rightarrow$ 用 $E E A$

y	x	r	q
1	0	b	y
0	1	a	0

＊若 $a / b<0$
$\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$ ？
\rightarrow 解 $|a| x+|b| y=\operatorname{gcd}(|a|,|b|)$
－Common divisor divides GCD（CDD GCD）

$$
\forall a \cdot b, c \in \mathbb{Z} \text { if } c|a \wedge u| b \Rightarrow c \mid \operatorname{gcd}(a, b)
$$

proof：Let $a \cdot b, c \in \mathbb{Z}$
assume cla～clb
$B y B L, \exists s . t \in \mathbb{Z}$ s．t $a s+b t=\operatorname{gcd}(a, b)$
Sina da $\sim c \mid b$ ．by DIC．，dast $b t=\operatorname{gcd}(a, b)$
$\therefore c \mid \operatorname{gcd}(a, b)$
$* \quad \forall a, b, c \in \mathbb{Z}$, if $\operatorname{gcd}(a b, c)=1 \Rightarrow \operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$
proof let $a . b . c \in \mathbb{Z}$
assume $\operatorname{gcd}(a b, c)=1$
$B y B L, \exists s . t \in \mathbb{Z}$ s.t $a b s+c t=\operatorname{gcd}(a b, c)=1$

$$
\begin{array}{ll}
\hookrightarrow & a(b s)+c(t)=1 \\
\longrightarrow & b(a s)+c(t)=1
\end{array}
$$

Sind
同理 $\mid=\operatorname{acd}(b, c)$
$\mid=1 \geqslant 0 \quad$ by $\operatorname{GCDCT}, 1=\operatorname{gcd}(a, c)$

* Converse of \uparrow

$$
\forall a, b, c \in \mathbb{Z} \text {, if } \operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1 \Rightarrow \operatorname{gcd}(a b, c)=1
$$

proof. Let a.b. $c \in \mathbb{Z}$
assume $\operatorname{gcd}(a, c)=1 \wedge \operatorname{gcd}(b, c)=1$
By BL $\begin{aligned} & \exists \text { s.t } \in \mathbb{Z} \\ & \exists m, n \in \mathbb{Z}\end{aligned}$ s.t. $a s+c t=10$
$\exists m, n \in \mathbb{Z}$. s.t. $b_{m}+C n=1 \Omega$
(1) \times (2)

$$
\begin{aligned}
& a s b_{m}+a \operatorname{scn}+c t_{b}+c t c n=1 \\
& a b \times s m+c(a s n+t b m+t c n)=1
\end{aligned}
$$

Since $s_{m},(\operatorname{as} n+t b m+t c h) \in \mathbb{Z}$

$$
\begin{aligned}
& 1 / s m, 1 \mid(a s n+t b m+t c n) \quad 1 \geqslant 0 \\
& \therefore \operatorname{gcd}(a, b c)=1 \quad \text { by } G C D C T
\end{aligned}
$$

- Coprimenss Characterization Theorem (CCT)

$$
\forall a . b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1 \quad \Leftrightarrow \exists s, t \in \mathbb{N} \text { s.t. as }+b t=1
$$

- Division by GCD (DBGCD)

$$
\forall a b \in \mathbb{Z} .(a \neq 0 \text { or } b \neq 0) . \operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1, \quad d=\operatorname{gcd}(a, b)
$$

Proof: Let $a \cdot b \in \mathbb{Z}$ not both.
Assume $d=\operatorname{gcd}(a, b)$
$\because a . b$ not both $0 \quad \therefore d \neq 0$.
$\because d=\operatorname{gcd}(a, b) \quad \therefore d|a d| b . \quad \frac{a}{d}, \frac{b}{d} \in \mathbb{Z}$.
$\because d=\operatorname{gcd}(a, b) \quad \therefore \exists s . t \in \mathbb{Z}$. sit. $a s+b t=d \quad B y B L$

$$
\frac{a}{d} s+\frac{b}{d} t=1 \quad \longleftrightarrow d \neq 0
$$

$\because \frac{a}{d}, \frac{b}{d} \in \mathbb{Z}$. By cuT $\quad \therefore \operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$
ex. Prove $\operatorname{gcd}(a, b)=1 \Rightarrow \operatorname{gcd}(a, b c)=\operatorname{gcd}(a, c) \quad c \in \mathbb{N}$.
\rightarrow Due to $B L$, $a s+b t=1$
Let $\operatorname{gcd}(a, c)=d \quad a_{m}+c n=d$
$(a s+b t)(a m+c n)=d$
$a^{2} \operatorname{sm}+a s c n+a b t m+b_{c} t_{n}=d$
$a(\operatorname{asm} m+\sin +b t m)+b c \cdot(t n)=d$
$\rightarrow \because a \cdot s \cdot m \cdot c \cdot n \cdot b \cdot t \in \mathbb{Z} \quad \therefore a \operatorname{sm+cs} n+b t_{m} \in \mathbb{Z}$
$\because d=\operatorname{gcd}(a, c) \quad \therefore d|a \quad d| c$
$\because c|b c \quad \therefore B y T D \quad d| b c$
$i d \geqslant 0$
\therefore By GCDCT $d=\operatorname{gcd}(a, b c)$
Sogcd $\left(a, b_{c}\right)=\operatorname{gcd}(a, c)$
－Coprimeness and divisibility（CAD）

$$
\begin{aligned}
& \forall a . b \in \mathbb{Z} \quad c|a b \wedge \operatorname{gcd}(a, c)=1 \quad \Rightarrow c| b \\
& \text { ex. } 4|5 \times 8 \quad \operatorname{gcd}(4,5)=1 \quad \Rightarrow 4| 8 .
\end{aligned}
$$

proof：Let $a . b . c \in \mathbb{Z}$ ．
Assume $c \mid a b \quad \operatorname{gcd}(a, c)=1$
$\operatorname{Sin} \alpha \operatorname{gcd}(a, c)=1$ ，by CLT．$\exists x, y \in \mathbb{Z}$ ，s．t $a x+c y=1$
Sina clab，$\exists k \in \mathbb{Z}$ s．t $a b=c k$
$\because a b=c k \quad \therefore c k x+c b y=b \quad c(k x+b y)=b$
$\sin a k, x, b, y \in \mathbb{Z} \quad k x+b y \in \mathbb{Z} \quad$ So $c \| b$

6．6 Prime Numbers
－def．
If $p \in \mathbb{N}, p>1$ and positive divisors are only $1 \& p$ ．
Then p is prime
－Prime Factorization（PF）
every natural number $n>1$ can be written as product of primes
－Euclid＇s Theorem（ET）
有无穷个质数
－Euclid＇s Lemma（EL）
$\forall a, b \in \mathbb{N}$ ．p is prime．$\quad p|a b \Rightarrow p| a \vee p \| b$
proof．Let $a . b \in \mathbb{Z}$ ．p is prime rum．
prove by dimination．
plab \wedge pta $\Rightarrow p \mid b$ ．
$\because p$ is prime．\therefore its only positive divisors are $1 \& p$
$\because p \not a, \quad \therefore \operatorname{gcd}(a, p)=1$
$\because p|a b \wedge \operatorname{gcd}(a, p)=1 \quad \therefore p| b$ By CAP
－Generalized Euclid＇s Lemma
p is prime $n \in \mathbb{N} \quad a_{1}, a_{2} \cdots a_{n} \in \mathbb{Z}$
$p\left|a_{1} a_{2} \cdots a_{n} \Rightarrow p\right| a_{i}$ for some $i=1,2, \cdots, n$
－Unique Factorization Theorem（UFT）
Every $\mathbb{N}(n>1)$ can be written as a product of prime factors uniquely apart from the order of factors．大于 1 in 自然数只能军戒焳一一种 prime 相秋的形式
ex．Let p be a prime．Prove $13 p+1$ is perfect square iff $p=11$
$(\Rightarrow) \quad 13 p+1$ perfect $\Rightarrow p=11$

$$
\begin{aligned}
x^{2} & =13 p+1 \quad(x \in \mathbb{N}) \\
13 p & =x^{2}-1=(x+1)(x-1)
\end{aligned}
$$

Since 13 \＆p are prime，by UFT，the prime factorization $(k-1)(k+1)$ must be p case 1．$k-1=13 \quad k+1=p$
$F=14 \quad p=15 \quad(p$ isn＇t prime，\therefore ANE）
case 2.

$$
\begin{aligned}
& k-1=p \quad k+1=13 \\
& k=12 \quad p=11
\end{aligned}
$$

case 3．$k-1=1 \quad k+1=13$ ．\quad lik－1 $<k+1 \quad 1<13 p \therefore$ we con＇t have $k-1=13 p \quad k+1=1)$

$$
k=2 \quad p=\frac{3}{13} \quad \text { (DNE). }
$$

Therefore，if $13 p+1$ is perfect square．then $p=11$
(\Leftrightarrow) Assume $p=11$
Then $13 p+1=13 \times 11+1=143+1=144 . \rightarrow$ a perfect square

- Divisors from prime factorization (DFPF)

Let $n . c \in \mathbb{Z}$. $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}} \quad$ (piprime $\alpha \in \mathbb{N}$)
$c \mid n \Leftrightarrow 0 \leqslant \beta \leqslant \alpha \quad c=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$
ex. How many positive multiple of 12 are divisors of 8820 ?

$$
12=2^{2} \times 3^{1} \times 5^{0} \times 7^{0} \quad 8820=2^{2} \times 3^{2} \times 5 \times 7^{2}
$$

By DFPF: The positive divisors of 8820 are exactly maunders of form:

$$
2^{\beta_{1}} 3^{\beta_{2}} 5^{\beta_{3}} 7^{\beta_{4}} \quad 0 \leqslant \beta_{1} \leqslant 2 \quad 0 \leqslant \beta_{2} \leq 2 \quad 0 \leqslant \beta_{3} \leq 1 \quad 0 \leqslant \beta_{4} \leqslant 2
$$

To be multiple of 12 . We further require $\beta_{1} \geqslant 12$ and $\beta_{2} \geqslant 1$
Therefore $2 \leqslant \beta_{1} \leqslant 2 \quad \beta_{1}=2$

$$
\begin{array}{ll}
1 \leqslant \beta_{2} \leqslant 2 & \beta_{2}=1 \text { or } 2 . \\
0 \leqslant \beta_{3} \leqslant 1 & \beta_{3}=0 \text { or } 1 . \\
0 \leqslant \beta_{4} \leqslant 2 & \beta_{4}=0,1,2 .
\end{array}
$$

So $1 \times 2 \times 2 \times 3=12$ positive multiple
ex. Let $a \cdot b \in \mathbb{Z}$. prove $a^{3}\left|b^{3} \Leftrightarrow a\right| b$

$$
\left(\Rightarrow \quad a^{3}\left|b^{3} \Rightarrow a\right| b\right.
$$

Let $b=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{r}^{\beta_{n}}$
$\therefore b^{3}=p_{1}^{3 \beta_{1}} p_{2}^{3 \beta_{2}} \cdots p_{r}^{3 \beta_{n}}$
$B y D F P F, \quad 3 p_{i} \geqslant 3 \alpha_{i} \geqslant 0$
$\therefore \beta_{i} \geqslant \alpha_{i}$ for all i by DFPF, alb
$\left(\Leftrightarrow a\left|b \Rightarrow a^{3}\right| b^{3}\right.$
$\because a \mid b, b=k a$ for some $k \in \mathbb{Z}$.
$\therefore b^{3}=k^{3} a^{3} \quad k \in \mathbb{Z} \quad k^{3} \in \mathbb{Z} \quad \therefore a^{3} \mid b^{3}$

- GCD from Prime factovization (GCDPP)

$$
\begin{aligned}
& a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}} \quad b=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}} \\
& \operatorname{gcd}(a, b)=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdots \quad p_{k}^{\gamma_{k}} \quad \gamma_{i}=\min \left\{a_{i}, p_{i}\right\}(i=1,2, \cdots, k)
\end{aligned}
$$

ex. use GCPPF to colculate $\operatorname{gcd}(13230,12936)$

$$
\begin{aligned}
& \operatorname{gcd}(13230,12 q 36) \\
= & \left.\operatorname{gcd} 12 \times 3^{3} \times 5 \times 7^{2}, 2^{3} \times 3 \times 7^{2} \times 11\right) \\
= & 2^{\min \{1,3\}} \times 3^{\min \{1,33} \times 5^{\min \{1,0\}} \times 7^{\min \{2,2\}} \times 11^{\min \{0,13} \\
= & 2^{1} \times 3^{1} \times 5^{0} \times 7^{0} \times 11 \\
= & 6 \times 49 \\
= & 294
\end{aligned}
$$

7.1 Linear Diophantine Equations (LIEs)

- def.
both coefficient \& variables are integers
ex. (1) Does $143 x+253 y=11$ have a sol? Why?
(2) Does $143 x+253 y=155$ have a sol? Why?
(3) Does $143 x+253 y=154$ have a sol? Why?
\rightarrow Find $x, y \in \mathbb{Z} \quad$ sit. $143 x+253 y=d \quad d=\operatorname{god}(143,253)$

y	x	r	q
1	0	253	0
0	1	143	0
1	-1	110	1
-1	2	33	1
4	-7	11	3
-13	23	0	3

\rightarrow (1) Yes. We found $x=-7 \quad y=4$
(2) No

$$
\because 11=\operatorname{gcd}(143,253) \quad \therefore 11|143 \quad 11| 253
$$

Proof by contradiction: Assume $\exists x_{0} y_{0} \in \mathbb{Z}$. st $143 x_{0}+253 y_{0}=155$
$\because 11|14311| 253$, By DIC $11143 x_{0}+253 y_{0}$
$\therefore 111155$. But 111155 . contradicts.
So $143 x+253 y=155$ have wo integer solution
(3) Yes.

$$
\begin{aligned}
& 111143 . \quad 154=14 \times 11 \\
& 143 \times(-7)+253 \times 4=11 \\
& 14 \times[143 \times(-7)+253 \times 4]=11 \times 14 \\
& 143 \times(-7 \times 14)+253(4 \times 14)=154 \\
& 143 \times(-98)+253 \times 56=154
\end{aligned}
$$

- Linear Diophantine Equation Theorem I (LDET I) $\forall a b c \in \mathbb{N} \quad(a \neq 0 \wedge b \neq 0)$
the LDE $a x+b y=c$ has integer sol $x \cdot y . \Leftrightarrow d \mid c(d \log d(a, b))$
Proof: Let $a b c \in \mathbb{Z} \quad a \neq 0 \quad b \neq$
Let $d=\operatorname{gcd}(a, b)$
\Leftrightarrow Assume LDE $a x+b y=c$ has int sol
Then $\exists x_{0} y_{0} \in \mathbb{Z}$, sit $a x_{0}+b y_{0}=c$
Let $d=\operatorname{gcd}(a, b), d \mid a$ and $d \mid b$.
By D TC, d|axotbyo $\therefore d / c$
(k) Assume doc
Then $=\mathfrak{b} d \quad(b \in \mathbb{Z})$
Sine $d=\operatorname{gcd}(a, b), \quad B y B L, \exists s, t \in \mathbb{Z}$. sit $a s+b t=d$
$k(a s+b t)=k d$
$a(k s)+b(k t)=c$
$\therefore x=k s . \quad y=k t$ is a sol to $a x+b y=c$.

7．2 Finding all solutions in 2 variables
－LDET 2
Let $a, b, c \in \mathbb{Z} . \quad a \neq 0 \quad b \neq 0 . \quad d=\operatorname{gcd}(a, b)$
If $x=x_{0} \wedge y=y_{0}$ is one particular integer sol in LDE $a x+b y=c$ then set of all sol is $\left\{(x, y): x=x_{0}+\frac{b}{d} n, \quad y=y_{0}-\frac{a}{d} n, n \in \mathbb{Z}\right\}$

$$
\begin{aligned}
& \text { From LDET2. the complete sol is } \\
& x=-98+\frac{253}{11} n \\
& y=56-\frac{143}{11} n, \quad n \in \mathbb{Z} \\
& y=\frac{154-143 x}{2530} \\
& \text { 化简得 } x=-98+23 n, y=56-13 n, n \in \mathbb{Z} \Delta \\
& \text { So, }\{(x, y): x=-98+23 n, y=56-13 n, n \in \mathbb{Z}\}
\end{aligned}
$$

$$
\underbrace{\left.x=x_{0}+\frac{1}{d}\right)^{n}} \quad y=y_{0}-\frac{a}{d n}
$$

proof．
－Let a, b, c be arbitrary integers $a \neq 0 \quad b \neq 0 \operatorname{d}=\operatorname{gcd}(a, b)$
Define $A=\left\{(x, y): x=x_{0}+\frac{b}{d} n, y=y_{0}-\frac{a}{d} n, n \in \mathbb{Z}\right\}$

$$
B=\{(x, y): \quad x, y \in \mathbb{Z}, a x+b y=c\}
$$

想证 $A=B$ ，则耑证 $A \subseteq B, B \subseteq A$
－Prove $A \subseteq B$ ．已知 $(x, y) \in A$ 需记 $(x, y) \in B$

$$
\because(x, y) \in A \quad \therefore x=x_{0}+\frac{b}{d} n \quad \text { and } y=y_{0}-\frac{a}{d} n \quad n \in \mathbb{Z}
$$

$$
a x+b y=a\left(x_{0}+\frac{b}{d} n\right)+b\left(y_{0}-\frac{a}{d} n\right) \text {. }
$$

$$
=a x_{0}+\frac{a b}{d} n+b y_{0}-\frac{a b}{d} n=a x_{0}+b y_{0}=c
$$

$\therefore\left(x_{0}, y_{0}\right)$ is a sol to $a x+b y=c$
So $(x, y) \in B \quad A \subseteq B$
－Prove $B \subseteq A \quad$ 已知 $(x, y) \in B$ 需记 $(x, y) \in A$

$$
\because(x, y) \in B \quad \therefore a x+b y=c \quad(x, y \in \mathbb{Z})
$$

$\left(x_{0}, y_{0}\right)$ is a sol to LDE $a x_{0}+b y_{0}=c \Rightarrow a x+b y=a x_{0}+b y_{0} \quad(*)$

$$
a\left(x-x_{0}\right)=b\left(y_{0}-y\right)
$$

$\because \quad a \neq 0 \sim b \neq 0, d \neq 0$ ．dividing by $d \neq 0 \quad \therefore \frac{a}{d}\left(x-x_{0}\right)=\frac{b}{d}\left(y_{0}-y\right)$

$$
\begin{aligned}
& \left.\because \frac{a}{d} \&\left(x-x_{0}\right) \in \mathbb{Z} \quad \therefore \frac{a}{d} \right\rvert\, \frac{b}{d}\left(y_{0}-y\right) \\
& \because \operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1 \quad \text { by } \left.D B G C D . \quad \therefore \frac{a}{d} \right\rvert\, y_{0}-y . \text { by } C A D \\
& \frac{a}{d} n=y_{0}-y \quad y=y_{0}-\frac{a}{d n} \\
& \text { 代入 } * \quad \frac{a}{d}\left(x-x_{0}\right)=\frac{b}{d}\left(\frac{a}{d}\right) n \\
& a\left(x-x_{0}\right)=\frac{a b}{d} n \\
& x-x_{0}=\frac{b}{d} n \quad(\because a \neq 0) \\
& x=x_{0}+\frac{b}{d} n
\end{aligned}
$$

8．1 Congmence
－def．
m 为固定正整数 若 $m /\left(a-b_{b}\right) \quad a \cdot b \in \mathbb{Z}$ 。
＂a is congrient to b modulo m＂
写作 $a \equiv b(\bmod m)$三：congmena m：modulus
ep． $7 \equiv-1 \bmod 8$ ．
Since $8 \mid 7-(-1)$
$-1 \equiv 15 \bmod 8$
Sina $8 \mid-1-15$

$$
\begin{array}{rlrl}
\Rightarrow a \equiv b(\bmod m) & \Leftrightarrow m \mid(a-b) & \\
& \Leftrightarrow a-b=k_{m} & & k \in \mathbb{Z} \\
& \Leftrightarrow a=b+k m & & k \in \mathbb{Z} .
\end{array}
$$

8．2 Properties of Congruence
－Congmence is an Equivalent Relation（CER）

$$
\forall a b c \in \mathbb{Z}
$$

（1）$a \equiv a(\bmod m) \quad$ Reflexible
（2）$a \equiv b(\bmod m) \Rightarrow b \equiv a(\bmod m) \quad$ Symmetric
（8）$a \equiv b(\bmod m) \wedge b \equiv c(\bmod m) \Rightarrow a \equiv c(\bmod m) \quad$ Transitive
Proof（1）：
Let $a \in \mathbb{Z} \quad a-a=0$

$$
\because m \in \mathbb{N}, m|0 \quad \therefore m| a-a . \quad a \equiv a(\bmod m)
$$

Proof（2）：
Let $a \cdot b \in \mathbb{Z}$ ．
Assume $a \equiv b(\bmod m) \rightarrow m \mid(a-b)$

$$
\begin{aligned}
& \because(a-b)|-(a-b) \quad B y T D . \quad m|-(a-b) \\
& \therefore m \mid(b-a) \quad b \equiv a(\bmod m)
\end{aligned}
$$

Proof (3):
Let $a . b \cdot c \in \mathbb{Z}$
Assume $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$

$$
\begin{aligned}
& \therefore m|a-b \quad m| b-c \\
& \text { ByDIC, } m|a-b+(b-c) \quad \therefore m| a-c \\
& \therefore m \mid a-c \quad a=c(\bmod m)
\end{aligned}
$$

- Proposition 2.

$$
\forall a_{1} a_{2} b_{1} b_{2} \in \mathbb{Z} \text {, if } a_{1} \equiv b_{1}(\bmod m) \quad a_{2} \equiv b_{2}(\bmod m)
$$

Then (1) $a_{1}+a_{2}=b_{1}+b_{2}(\bmod m)$
(2) $a_{1}-a_{2}=b_{1}-b_{2}(\bmod m)$
(3) $a_{1} a_{2}=b_{1} b_{2}(\bmod m)$

Proof (3):
Let $a_{1} a_{2} b_{1} b_{2} \in \mathbb{Z}$.
Assume $a_{1} \equiv b,(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$
Then $m\left|a_{1}-b_{1} \quad m\right| a_{2}-b_{2}$
By DIC, $m \mid\left(a_{1}-b_{1}\right) a_{2}+\left(a_{2}-b_{2}\right) b_{1}$
So $m \mid a_{1} a_{2}-b_{1} b_{2}$

- Congruence Add and Multiply (CAM)

$$
\begin{aligned}
& \forall n \in \mathbb{Z}^{+}, \quad a_{1}, \cdots, a_{n} \cdot b_{1}, \cdots, b_{n} \in \mathbb{Z} \\
& \text { If } a_{i} \equiv b_{i}(\bmod m) \quad 1 \leq i \leq n
\end{aligned}
$$

Then $0 a_{1}+a_{2}+\cdots+a_{n} \equiv b_{1}+b_{2}+\cdots+b_{n}(\bmod m)$

$$
\text { (2) } a_{1} a_{2} \cdots a_{n} \equiv b_{1} b_{2} \cdots b_{n}(\bmod m)
$$

－Congrana Power（CP）

$$
\begin{aligned}
& \forall n \in \mathbb{Z}^{+}, a \cdot b \in \mathbb{Z} . \\
& a \equiv b(\bmod m) \Rightarrow a^{n} \equiv b^{n}(\bmod m)
\end{aligned}
$$

－Congmence Divide（CD）

$$
\begin{array}{ll}
\forall a \cdot b \cdot c \in \mathbb{Z}, & E \\
a c \equiv b c(\bmod m) & \wedge \operatorname{gcd}(c, m)=1 \quad \Rightarrow a \equiv b(\bmod m) \\
\text { ep. } 27 \equiv 3(\bmod 8) & 8 \mid 27-3=3 \times 19-1)
\end{array}
$$

Since $\operatorname{gcd}(8,3)=1$ ，by $\operatorname{CAD} 8 \mid 9-1 \quad$ So $9 \equiv 1(\bmod 8)$

$$
27 \equiv 3(\bmod 12) \quad 12 \mid 27-3=3(9-1)
$$

$12 \not 9-1 \quad$ So $q \neq 1(\bmod 12)$
prof．Let abc $\in \mathbb{Z}$
Assume $a c \equiv b_{c}(\bmod m)$ and $\operatorname{gcd}(c, m)=1$
$\because a c \equiv b c(\bmod m) \quad \therefore \cdot m \mid a c-b c=c(a-b)$
$\because \operatorname{gcd}(c, m)=1 \quad$ by $C A D \quad m \mid a-b$
So $a \equiv b(\bmod m)$
＊1．者 $\operatorname{gcd}(c, m) \neq 1, ~ C D$ tolls nothin！
2．If $a c \equiv b c(\bmod m)$ ，then $a \equiv b\left(\bmod \frac{M}{\operatorname{gcd}(c, m)}\right)$
题目出现妥证明
ex. is $59+62^{000}-14$ divisible by 7 .

By CP. $\quad 62^{2000} \equiv(-1)^{2000}(\bmod 7)$

$$
\equiv 1(\bmod 7)
$$

$$
5 \equiv(-2)(\bmod 7)
$$

So

$$
\begin{array}{rlrl}
5^{3} & \equiv(-2)^{3}(\bmod 7) & \text { by } c p \\
& \equiv 8(\bmod 7) & & \\
& \equiv-1(\bmod 7) & (\text { Sing } 7 \mid-8-(-1))
\end{array}
$$

So $\begin{aligned} 5^{9} \equiv\left(5^{3}\right)^{3} & \equiv(-1)^{3} \bmod 7 \text { by } C P \\ & \equiv-1 \bmod 7\end{aligned}$

$$
\equiv-1 \bmod 7
$$

By CAM $\begin{aligned} 5^{9}+62^{2000}-14 & \equiv(-1)+1+0(\bmod 7) \\ & \equiv 0(\bmod 7)\end{aligned}$
So $59+62^{2000}-14$ is divisible by 7

$$
\begin{aligned}
& 7 \mid\left(5^{9}+62^{2000}-14\right)-0 \\
& 5^{9}+62^{2000}-14 \equiv 0(\bmod 7) \\
& -14 \equiv 0(\bmod 7) \quad(\text { Since } 71-14-0) \\
& 62 \equiv(-1)(\bmod 7) \quad(\operatorname{Sin} a \quad 7 \mid 62-(-1))
\end{aligned}
$$

8．3 Congruence and Remainders．
－Congruent rf Same Remainder（CISR）
$\forall a b \in \mathbb{Z} \quad a \equiv b(\bmod m) \Leftrightarrow a ミ m$ 与 $b i m$ 余数相同
proof．Let $a b \in \mathbb{Z}$
By DA，$\quad a=q_{1} m+r_{1} \quad b=q_{2} m+r_{2}$
for unique $q_{1}, r_{1}, q_{2}, r_{2} \in \mathbb{Z} \quad 0 \leq r_{1}<m$ and $0 \leq r_{2}<m$
＂\Rightarrow＂Assume $a \equiv b(\bmod m)$ if $r_{1}=r_{2}$

$$
\begin{aligned}
& \because a \equiv b(\bmod m) \quad m \mid a-b \\
& \because a-b=m\left(q_{1}-q_{2}\right)+r_{1}-r_{2} \quad \therefore m \mid\left[m\left(q_{1}-q_{2}\right)+r_{1}-r_{2}\right]
\end{aligned}
$$

Also，$m \mid m\left(q_{1}-q_{2}\right)$
By DLL，$m \mid\left[m\left(q_{1}-q_{2}\right)+r_{1}-r_{2}\right]-m\left(q_{1}-q_{2}\right)$
So $m \mid r r_{1}-r_{2}$
So $r_{1}-r_{2}=k_{m}$ for some $k \in \mathbb{Z}$

$$
\begin{aligned}
& \because 0 \leq r_{1}<m \quad \text { and } \quad 0 \leq r_{2}<m \\
& \therefore \quad 0 \leq r_{1}<m \quad 0 \geqslant-r_{2}>-m \\
& \therefore \quad-m<r_{1}-r_{2}<m .
\end{aligned}
$$

So $-m<k m<m \quad$ Sin $r_{1}-r_{2}=k m$
同除 $m>0 \quad-1<k<1$

$$
\begin{aligned}
& \because k \in \mathbb{Z} \quad k=0 \\
& \therefore r_{1}-r_{2}=0 \quad \therefore r_{1}=r_{2}
\end{aligned}
$$

＂\＆＂Assume a \＆b have the same remainder when ㄷ m \longrightarrow 相当于 assume $\quad r_{1}=r_{2}$

So $a=q_{1} m+r_{1}$ and $b=q_{2} m+r_{1}$
and $a-b=q_{1} m+r_{1}-q_{2} m-r_{1}=m\left(q_{1}-q_{2}\right)$
Sin $q_{1} \cdot q_{2} \in \mathbb{Z}, q_{1}-q_{2} \in \mathbb{Z}$ So $m \mid a-b$
Therefore, $a \equiv b(\bmod m)$

- Congruent To Remainder (CTR)

$$
\begin{aligned}
& \forall a b \in \mathbb{Z}, \quad 0 \leq b<m, \\
& a \equiv b(\bmod m) \quad \Leftrightarrow a \div m \cdots b
\end{aligned}
$$

ex. What remainder of $\left[77^{100}(999)-6^{83}\right] \div 4$
So $\begin{aligned} 77^{100} & \equiv 1^{100}(\bmod 4) \\ & \equiv 1(\bmod 4)\end{aligned}$ by $C P$

$$
\equiv 1(\bmod 4)
$$

$$
\begin{aligned}
999 & \equiv(-1)(\bmod 4) \\
6 & \equiv 2(\bmod 4)
\end{aligned}
$$

So

$$
\begin{aligned}
& \begin{aligned}
6^{2} & \equiv 2^{2}(\bmod 4) \text { by } C P \\
& \equiv 4(\bmod 4)
\end{aligned} \\
& \equiv 0(\bmod 4) \\
& \text { So } 6^{83} \equiv 6\left(6^{2}\right)^{41} \equiv 6(0)^{41} \equiv 6 \cdot 0 \equiv 0(\bmod 4) \\
& \text { By CAM, } 77^{100} \times 999-b^{83} \equiv 1 \times(-1)-0(\bmod 4) \\
& \text { 三-1 (mad 4) } \\
& \equiv 3(\bmod 4)
\end{aligned}
$$

Since $0 \leq 3<4$ by $4 T$, remainder is 3 .

- Divisibility by 3
$31 a \Leftrightarrow 3 \mid$ sum of digits
Proof: Let a be non-negative integer
\rightarrow Let $d_{k} \cdot d_{k-1}, \cdots, d_{2} \cdot d_{1}, d_{0}$ be decimal representation of a

$$
d_{i} \in\{0,1,2,3,4,5,6,7,8,9\} \quad \forall i=0, \cdots, k \quad(k \geqslant 0)
$$

Then $a=d_{k} \cdot 10^{k}+d_{k-1} \cdot 10^{k-1}+\cdots+d_{0} \cdot 10^{0}$
$\rightarrow \because 10 \equiv 1(\bmod 3)$

$$
\therefore \text { by } C P, 10^{i} \equiv 1^{i} \equiv 1(\bmod 3) \quad \forall i \in \mathbb{N}
$$

$$
\begin{aligned}
\rightarrow \text { By CAM and }(P, a & \equiv d_{k} 10^{k}+d_{k-1} 10^{k-1}+\cdots+d_{1} 10^{1}+d_{0}(\bmod s) \\
& \equiv d_{k}+d_{k-1}+\cdots+d_{2}+d_{1}+d_{0}(\bmod 3)
\end{aligned}
$$

\rightarrow By CTR, $3 \mid a \Leftrightarrow a \equiv 0(\bmod 3)$

$$
\begin{aligned}
\rightarrow & \because a \equiv d_{k}+d_{k-1}+\cdots+d_{2}+d_{1}+d_{0}(\bmod 3) \\
\therefore & a \equiv 0(\bmod 3) \text { iff } d_{k}+d_{k-1}+\cdots+d_{0}=0(\bmod 3) \\
& 3|a \Leftrightarrow 3| d_{k}+d_{k-1}+\cdots+d_{0}
\end{aligned}
$$

- Divisibility by 11

$$
11|a \Leftrightarrow \quad 11| S_{e}-S_{0}
$$

(Se: sum of even digit of a, S_{0} : sum of oold digit of a)
8.4 Linear Congmence

- linear congruence
$a x \equiv c\left(\bmod _{m}\right)$ is $1-c$ in x.
solution to the $1-c$ is x_{0}. sit $a x_{0} \equiv c(\bmod m)$
- linear congmence theorem LLCTJ
$\forall a c \in \mathbb{N}, a \neq 0$,
$a x \equiv c(\bmod m)$ has a sol $\Leftrightarrow d \mid c \cdot d=\operatorname{gcd}(a, m)$
If $x=x_{0}$ is a sol of congruence, then $\left\{x \in \mathbb{Z}: x \equiv x_{0}\left(\bmod \frac{m}{d}\right)\right\}$ $\left\{x \in \mathbb{Z}: x \equiv x_{0}, \quad x_{0}+\frac{m}{d}, \quad x_{0}+2 \frac{m}{d}, \cdots, x_{0}+(d-1) \frac{m}{d}(\bmod m)\right\}$
ex. Find all sol of $4 x-2 \equiv 6(\bmod 10)$
By CAM $\tau_{\text {equivalent to } 4 x \equiv 8 \operatorname{lmod} 10) \text { by } C A M}$

$\rightarrow \quad$| x | $\bmod (0)$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | | | | | | | | | | |

$\rightarrow \therefore$ Sol are $x \equiv 2 \ln \ln 10)$ or $x \equiv 7(\bmod 10)$

d sol $\bmod m$
$a x \equiv c(\bmod m)$ where $x \in \mathbb{Z}$

$$
\begin{aligned}
& \Leftrightarrow c \equiv a x(\bmod m) \\
& \Leftrightarrow m \mid(c-a x) \\
& \Leftrightarrow c-a x=b m \quad k \in \mathbb{Z} \\
& \Leftrightarrow a x+m k=c \quad x \cdot k \in \mathbb{Z}
\end{aligned}
$$

$a x+m k=c$ has a sol of ged $(a, m) \mid c$
ex．Find all sol of $12 x \equiv 102(\bmod 2010)$
Lequivalent to solving LDE $\quad 12 x+2010 y=102$
$\rightarrow \operatorname{gcd}(12,2010)=6$ by EEA
$\because 61102 \therefore$ LDE has solutions．
（1）证LDE 有解写成 $a x+m y=c i v$ 形式 $\operatorname{gcd}(a, m)=\ldots$

$$
x=-2839 \quad y=17
$$

$\cdots \mid c \Rightarrow$ 有解

$$
\begin{aligned}
\rightarrow\left\{(x, y): x=-2839+\frac{2010}{6} n, y=17-\frac{12}{6} n,\right. & n \in \mathbb{Z}\} \\
\therefore x=-2839+\frac{2010}{6} n=-2839+335 n, & n \in \mathbb{Z}
\end{aligned}
$$

$\rightarrow x \equiv-2839(\bmod 335) \equiv 176(\bmod 335)$
$\forall k \in \mathbb{Z} \quad x=176+335 k$
$x \equiv 176(\bmod 335)$

$$
\because 2010=335 \times 6
$$

$$
x \equiv 176(\bmod 2010)
$$

$k=0 \quad x=176(\bmod 2010)$
$k=1 \quad x=511 \quad(\bmod 2010)$
$k=2 \quad x=846 \quad(\bmod 2010)$
$1=3 \quad x=1181 \quad(\bmod 2010)$
$k=4 \quad x=1516(\bmod 2010)$
$k=5 \quad x=1851 \quad(\bmod 2010)$
$k=6 \quad x=2186 \cong 176(\bmod 2010)$
$\therefore x=176 \cdot 511,846 \cdot 1181.1516,1851,2186$
ex．Find all sol to $10 \equiv 3(\bmod 14)$
equivalent to csluing LDE $10 x+14 y=3$
$\rightarrow \operatorname{gcd}(10,14)=2$ by EEA．
2才 3．have no sol
ex．Find all sol to $15 x \equiv 6(\bmod 18)$
\rightarrow Sima ged $(15,18)=3 \quad 316$
By LCT，the LDE has sols．（ 3 sols nod 18） $\rightarrow x=4$ is a sol．

By LCT，the complete．sol is $\left\{x \in \mathbb{Z}: x \equiv 4 \bmod \frac{18}{3}\right\}$
$\rightarrow\{x \in \mathbb{Z}: x \equiv 4 \bmod 6\}$

$$
\Rightarrow\{x \in \mathbb{Z}: x \equiv 4 \cdot 10 \cdot 16(\bmod 6)\}
$$

8． 6 Congmence Classes \＆Modular Arithmetic
－def．congruence class（属于 set）
$C C \bmod m$ of Int a is set of Int．

$$
[a]=\{x \in \mathbb{Z}: x \equiv a(\bmod m)\}
$$

＊需要已知 m 只说 $[4]$ is ambiguous
＊By CISR，there are m different congruence classes mod m since there are m possible remainders when Em．
＊When $m=5 .[4]=[9]=[-1]$
\therefore 一般用 $0 \sim m-1$ 来式指
$-\mathbb{Z}_{m}$
The Int modulo m to be set of $m c c$ ．

$$
\mathbb{Z}_{m}=\{[0],[1],[2],[3], \cdots,[m-1]\}
$$

－modular arithmetic

$$
[a][b]=[a b]
$$

$$
[1]^{-1}=[1]
$$

\times	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$
$[2]$	$[0]$	$[2]$	$[0]$	$[2]$
$[3]$	$[0]$	$[3]$	$[2]$	$[1]$

$$
[2]^{-1} \text { DNE }
$$

$$
[3]^{-1}=[3]
$$

$$
\begin{aligned}
& {[a]+[b]=[a+b]} \\
& \text { ep. } \mathbb{Z}_{4}
\end{aligned}
$$

© For any $[a]$ in $\mathbb{Z}_{m} \quad[a]+[0]=[a+0]=[a]$
$[0]$ is the additive identity in \mathbb{Z}_{m} ．
OF Or any $[a]$ in $\mathbb{Z} \quad[a][1]=[a, 1]=[a]$
$[1]$ is the multiplicative identity in \mathbb{Z}_{m}
（3）For all $[a] \in \mathbb{Z} m \quad[a]+[-a]=[a+(-a)]=[0]$
$[-a]$ is the additive inverse of $[a]$ multiplicative identity
（4）For any $[a] \in \mathbb{Z}_{m}[a][b]=[b][a]=[1]$
$[b]$ is the multiplicative inverse of $[a] . \quad$ 导作 $[a]^{-1}=[b]$有时不存在：ep．$\left.Z_{4} \quad[-1]^{-1}=[]_{1}\right]$
$[0]^{-1} \&[2]^{-1}$ don＇t have unltiplicatie inverse
ex．Calculate add \sim and unit \sim of $[6]$ \＆$[7]$
add \sim of $[b]$ is $[-6]=[3]$
add \sim of $[7]$ is $[-7]=[2]$
molt \sim of $[6]$ is $[b][x]=[1]$ or equivalently $[6 x]=[1]$
True exactly when $6 x \equiv 1(\bmod 9)$ ．
$\because \operatorname{gcd}(6,9)=3 \quad 3 \nmid 1$ by LCT $\quad \therefore$ no sol
So $[G]^{-1}$ DNE in \mathbb{Z}_{9}
molt \sim of $[7]$ is $[7][x]=[1]$ or aquivdently $[7 x]=[1]$
True exactly when $7 x \equiv 1$ undid 9）
$\because \operatorname{gcd}(7,9)=1 \quad 11$ by LCT \therefore have 1 sol $\bmod 9$ ．
By inspection，$x=4$ is a sol．By LCT the complete sol is $x=4(\bmod 9)$ So we see that $[7]^{-1}=[4]$
－Modular Arithmetic Theorem（MAT）

$$
\forall a . c \in \mathbb{Z} . \quad a \neq 0 .
$$

$[a][x]=[c]$ in \mathbb{Z}_{m} has a sol ff $d / c . \quad d=\operatorname{ged}(a, m)$
When d / c ，there are d sols．

$$
\left[x_{0}\right],\left[x_{0}+\frac{m}{d}\right],\left[x_{0}+2 \frac{m}{d}\right], \cdots,\left[x_{0}+(d-1) \frac{m}{d}\right]
$$

where $[x]=\left[x_{0}\right]$ is 1 sol．

$$
\begin{align*}
& \text { ex. Solve }[25][x]=[12] \text { in } \mathbb{Z}_{9} \quad 25 x \equiv 12 \bmod 9 \\
& \rightarrow[25][x]+[4]=[12] \\
& {[7][x]=[12]-[4]=[8]} \tag{化尚}
\end{align*}
$$

\rightarrow By MAT，Since $\operatorname{gcd}(7,9)=1$ and 18 ，there is 1 sol 是否有解 $\rightarrow 9 \mid 7 x-8 \quad 9_{n}=7 x-8 \quad 7 x-9 n=8 \quad$（用 \ln A A 解） By inspection［5］is a sol．Since $[7][5]=[35]=[8]$ so the sol is $[x]=[5]$
ex．Solve $[24][x]+[3]=[7]$ in \mathbb{Z}_{9}

$$
\Leftrightarrow[6][x]=[4]
$$

$\because \operatorname{gcd}(6,9)=3$ and $3 \nmid 4$

$$
\therefore \text { no sol. }
$$

8.7 Fermat's Little Theorem

- Fermat's Little Theorem (F ℓT)
$\forall p \in$ prime \wedge pta. $a^{p-1} \equiv(\bmod p)$
ep. $b^{6} \equiv 1 \bmod 7 \quad \because 7 \nmid 6 \quad b^{2} \equiv 36 \equiv 1(\bmod 7)$

$$
\begin{array}{llllll}
p=7 . a=6 \\
\mathbb{Z}_{7} & {[1]} & {[2]} & {[3]} & {[4]} & {[5]}
\end{array}[6] \begin{array}{lllll}
& & & & \\
& \left.[a]]_{12}\right] & {[12]} & {[18]} & {[24]}
\end{array}[30] \quad[36]
$$

proof: gs 138-139

$$
\begin{array}{ccccc}
1 & & a & a \cdot 2 a \cdots(p-1) a & \equiv 1 \cdot a \cdots(p-1) \\
2 & x a & 2 a & (\bmod p) \\
3 & 3 a & a^{p-1}(1 \cdot a \cdots(p-1)) & \equiv 1 \cdot a \cdots(p-1) & (\bmod p) \\
\vdots & \vdots & & a^{p-1} & \equiv 1
\end{array}
$$

ex. determine the remainder when 7^{92} is divided by 11 .
$\because 11$ is prime $\wedge \quad 1 \nmid 7$, FlT applies $7^{\circ} \equiv 1(\bmod 11)$

$$
\begin{aligned}
\therefore 7^{92} \equiv 7^{2}\left(7^{10}\right)^{9} & \equiv 49(1)^{9}(\bmod 11) \\
& \equiv 5 \bmod 11
\end{aligned}
$$

$\because 0 \leq 5<11$. By CTR. remainder is 5

* 1. In $\mathbb{Z}_{p}, F l T$ tells us that $[a] \neq[0]$

$$
\left[a^{p-1}\right]=[1], \quad[a]^{p-1}=[1]
$$

2. In \mathbb{Z}_{p}, every nonzero congruence class, $[a] \neq[0]$, has a multiplicative inverse $[a]^{-1}$.
From $F l T,[a]^{-1}=\left[a^{p-2}\right] \quad a p \cdot \mathbb{Z}_{103},[22]^{-1}=\left[22^{(01}\right]$
－Corollary 推沦
$\forall p \in$ prime.$a \in \mathbb{Z} \quad a^{p} \equiv a(\bmod p)$
proof．
case 1：ala

$$
a \equiv 0(\bmod p) \quad a^{p} \equiv 0^{p} \equiv 0(\bmod p) \quad \therefore a^{p} \equiv a(\bmod p)
$$

case 2：pta
By FlT $a^{p-1} \equiv 1(\bmod p) \quad$ 两边 $\times a \rightarrow a^{p} \equiv a(\bmod p)$
ep．pta：$\left.b^{b} \equiv 1 \operatorname{lmod} 7\right)$ by $F l J$ ．

$$
\Rightarrow 6 \cdot 6^{6} \equiv 6 \cdot 1(\bmod 7)
$$

pla： $14^{7} \equiv 14(\bmod 7)$
ex．determine the remainder when $8^{9^{7}}$ is divided by 11 ．
$\because 11$ is prime． $11 \nmid 8$

$$
* 8^{9^{7}} \neq\left(8^{9}\right)^{7}
$$

\therefore Due to $F l T, \quad 8^{10} \equiv 1(\bmod 11)$

$$
q \equiv(-1)(\bmod 10) ? \quad \therefore B_{y}\left(p, q^{7} \equiv(-1)^{7} \equiv-1 \equiv q(\bmod 10)\right.
$$

$$
\therefore 9^{7}=9+10 k \quad k \in \mathbb{Z}
$$

$$
\begin{array}{r}
8^{9^{7}} \equiv 8^{9+10 k} \equiv 8^{9} \cdot\left(8^{10}\right)^{k} \equiv 8^{9}(1)^{k}(\bmod 11) \text { by } F l T \\
\cdots 7(\bmod 11)
\end{array}
$$

$\because 0 \leq 7<11$ by $L T R$ ，the remainder is 7
8.8 The Chinese Remainder Theorem

- Chinese Remainder Tho orem (CRT)

$$
\forall a_{1}, a_{2} \in \mathbb{Z} \quad m_{1} \cdot m_{2} \in \mathbb{Z}^{+}
$$

If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$,
Then $n \equiv a_{1}\left(\bmod m_{1}\right)$
$n \equiv a_{2}\left(\bmod m_{2}\right)$
$\rightarrow n \equiv n_{0}\left(\bmod m_{1} m_{2}\right)$ is a unique solution
ep. $n \equiv 8(\bmod 15) \quad n \equiv 5(\bmod 7)$
$\because \operatorname{ged}(15,7)=1 \quad \therefore n \equiv 68(\bmod 105)$
\otimes proof.
$\because \operatorname{gcd}\left(m_{1}, m_{2}\right)=1$.
\therefore sols of $n \equiv a_{1}\left(\bmod m_{1}\right)$ is $\left\{a_{1}+m_{1} x: x \in \mathbb{Z}\right\}$
存在 $n \equiv a_{2}\left(\bmod m_{2}\right) \Leftrightarrow m_{1} x \equiv a_{2}-a_{1}\left(\bmod m_{2}\right)$
$\because L C T \&$ def of congmence and divisibility
\therefore sols of $m_{1} x \equiv a_{2}-a_{1}\left(\bmod m_{2}\right)$ is $\left\{m_{2} y+x_{0}=y \in \mathbb{Z}\right\}$

$$
\begin{aligned}
& \because x=m_{2} y+x_{0} \\
& \therefore\left\{m_{1}\left(m_{2} y+x_{0}\right)+a_{1}: y \in \mathbb{Z}\right\}=\left\{m_{1} m_{2} y+\left(m_{1} x_{0}+a_{1}\right): y \in \mathbb{Z}\right\}
\end{aligned}
$$

congmence class $\left[n_{0}\right]$ in $\mathbb{Z}_{m_{1} m_{2}}$.
$n_{0}=m_{1} x_{0}+a_{1}$ is a sol

$$
\begin{aligned}
& \text { ex. solve } \begin{array}{l}
x \equiv 5(\bmod 6) \\
\\
\\
\\
x \equiv 2 \\
x \equiv 3 \operatorname{lnod} 7) \\
\rightarrow \text { 先并 } x \equiv 2(\bmod 7) \quad x \equiv 3(\bmod 11) \\
\because \operatorname{gcd}(7,11)=1 \quad \text { by } C R T, \text { there is one sol. }(\bmod 77) \\
x \equiv 3(\bmod 11): x=3,14,25,36,47,(58) 69 . \\
58 \equiv 3(\bmod 11) \quad 58 \equiv 2(\bmod 7)
\end{array}
\end{aligned}
$$

\therefore By CRT，the complete sol is $x \equiv 58(\bmod 77)$
\rightarrow 再算 $\quad x \equiv 5(\bmod 6)$

$$
x \equiv 58(\bmod 77)
$$

$$
\because x \equiv 58(\bmod 77) \quad \therefore x=58+77 k \quad k \in \mathbb{Z}
$$

$$
\rightarrow k=5 \text { is a sol. }
$$

By LCT，complete sol is $k \equiv 5(\bmod b)$

$$
\begin{aligned}
& \therefore k=5+6 s \quad(s \in \mathbb{Z}) \\
& \quad x=58+77 k=58+77 \times(5+6 s)=443+4623
\end{aligned}
$$

\therefore complete sol is $x \equiv 443(\bmod 462)$

$$
4 \times 7 \times 17
$$

- Generalized Chinese Remainder Theorem (GCRT.)

$$
k \cdot m_{1} \cdot m_{2} \cdots m_{k} \in \mathbb{Z}^{+} \quad a_{1} \cdot a_{2} \cdots a_{k} \in \mathbb{Z}
$$

If $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1 \quad \forall i \neq j$
Then $\left\{n: n \equiv a_{1}\left(\bmod m_{1}\right) \quad n \equiv a_{2}\left(\bmod m_{2}\right) \cdots n \equiv a_{k}\left(\bmod m_{k}\right)\right\}$

$$
=\left\{n: n=n_{0}\left(\bmod m_{1} \cdot m_{2} \cdots m_{k}\right)\right\}
$$

ex. Solve $3 x \equiv 2(\bmod 5)$
$2 x \equiv 6(\bmod 7)$
$\because \operatorname{gcd}(2,7)=1$
$\therefore B y C D \&(A M, 2 x \equiv 6(\bmod 7) \Rightarrow x \equiv 3(\bmod 7)$
$3 x \equiv 2(\bmod 5) \quad$ has unique sol $x \equiv 4(\bmod 5)$
\therefore equivalent to solving $\quad x \equiv 4(\bmod 5)$

$$
x \equiv 3 \quad(\bmod 7)
$$

$x=24$ is a sol
$\because \operatorname{gcd} 15,7)=1$

$$
ᄂ 3,10,17,24, \ldots
$$

\therefore By CRT, complete sol is $x \equiv 24$ unod 35)
ex. solve $x \equiv 1 \quad(\bmod 6)$

$$
x \equiv 1 \quad(\bmod 8)
$$

$\operatorname{gcd}(6,8)=2 \neq 1 \quad \therefore C R T$ don't apply $\because x \equiv 1(\bmod 8) \quad \therefore x=1+8 k \quad k \in \mathbb{Z}$.
代入 $x \equiv 1(\bmod 6) \quad 1+8 k \equiv 1 \operatorname{lnod} 6)$ $8 k \equiv 0(\bmod b)$

By LCT, $\because \operatorname{gcd}(8, b)=2210 \quad \therefore$ there are 2 sols $(\bmod b)$
They are $k \equiv 0(\bmod b) \quad k \equiv 3(\bmod b)$

$$
\therefore k=6 s \quad \text { or } k=3+6 s \quad s \in \mathbb{Z}
$$

$$
x=1+8 k=1+8.6 s=1+48 s \text { or } x=1+8 k=1+8(3+6 s)=25+485
$$

sols are $x \equiv 1(\bmod 48)$ or $x \equiv 25(\bmod 48)$

8． 9 Splitting a Modulus
－Splitting Modulus Theorem（SMT）
$\forall a \in \mathbb{Z} \quad m_{1}, m_{2} \in \mathbb{Z}^{+}$
$\operatorname{gcd}\left(m_{1}, m_{2}\right)=1 \Rightarrow\left\{\begin{array}{l}n \equiv a\left(\operatorname{mood}\left(m_{1}\right)\right. \\ n \equiv a\left(\bmod \left(m_{2}\right)\right.\end{array} \equiv n \equiv a\left(\bmod \left(m_{1} m_{2}\right)\right.\right.$
proof．Assume gad $\left(m_{1}, m_{2}\right)=1$ ．
\therefore Due to CRT，$n \equiv n\left(\bmod m_{1} m_{2}\right) \quad n_{0}$ is a particular sol．
Let $n_{0}=a$ ．

$$
\begin{aligned}
& \because a \equiv a\left(\bmod m_{1}\right) \quad a \equiv a\left(\bmod m_{2}\right) \\
& \therefore n \equiv a\left(\bmod m_{1} m_{2}\right)
\end{aligned}
$$

ex．determine remainder when 8^{97} divided by 55相当于解 $8^{97} \equiv x(\bmod$［55）by CRT
By SMT，$\because \operatorname{god}(5,11)=1$
\therefore 相蒔于解 $8^{97} \equiv x(\bmod 5) \quad 8^{97} \equiv x(\bmod 11)$
$\downarrow \downarrow$

$$
x \equiv 7(\bmod 11) \quad x \equiv 3(\bmod 5)
$$

By inspection $x \equiv 18$（mad 55）$\quad \therefore 8^{97}$ has remainder 18 ．
9.1 Public - Kay Cyptropaply

- Private Key

ky distribution problem: How to sooty trassonit
-RS
9.2 Implementing RSA Scheme
(a) Setting up RSA
(b) RSA Encryption
(c) RSA Decryption

The three stages are described below.
(a) Setting up RSA: To set up the RSA encryption scheme, Bob does the following.

1. Randomly choose two large, distinct primes p and q and let $n=p q$.
2. Select an arbitrary integer e so that $\operatorname{gcd}(e,(p-1)(q-1))=1$ and $1<e<(p-1)(q-1)$.

3 . Solve the congruence

$$
e d \equiv 1 \quad(\bmod (p-1)(q-1))
$$

for an integer d where $1<d<(p-1)(q-1)$.
4. Publish the public key (e, n).
5. Keep secret the private key (d, n), and the primes p and q.
(b) RSA Encryption: To encrypt a message as ciphertext and send securely to Bob, Alice does the following.

1. Obtain an authentic copy of Bob's public key (e, n).
2. Construct the plaintext message M, an integer such that $0 \leq M<n$.
3. Encrypt M as the ciphertext C, given by

$$
C \equiv M^{e} \quad(\bmod n) \text { where } 0 \leq C<n
$$

4. Send C to Bob.
(c) RSA Decryption: To decrypt the ciphertext received from Alice, Bob does the following.
5. Use the private key (d, n) to decrypt the ciphertext C as the received message R, given by

$$
R \equiv C^{d} \quad(\bmod n) \text { where } 0 \leq R<n
$$

2. Claim: The received message R equals the original plaintext message M, i.e., $R=M$.
9.3 Proving RSA Scheme Works
-RS

$$
\forall \text { p.q.n.e.d. } M . C . \& R .
$$

if $1, p \& q$ are distinct primes

$$
2 n=p q
$$

3. $e \& d$ are positive integers sit. $\quad e d \equiv 1($ mod $(p-1)(q-1))$
and $1<e, d<(p-1)(q-1)$
4. $0 \leqslant M<n$.
5. $M^{e} \equiv C(\bmod n) \quad 0 \leq C<n$
b. $C^{d} \equiv R(\bmod n) \quad 0 \leqslant R<n$.

Then $R \equiv M$
proof.

$$
R^{b} \equiv C^{d} \stackrel{5}{\equiv}\left(M^{e}\right)^{d} \equiv M^{e d}(\bmod p q)
$$

By SMT, equivallent to solve $\left\{\begin{array}{l}M_{\text {ed }}(\text { mod } p) \\ M^{\text {ed }}(\bmod p)\end{array}\right.$
对于
(1) $p \mid M$

$$
M \equiv 0(\bmod p) \quad R \equiv 0^{\text {ad }} \equiv 0(\bmod p)
$$

10.1 Standard Form

- def.

$$
i^{2}=-1
$$

$$
\begin{aligned}
& \mathbb{C}=\left\{\begin{array}{c}
x+\underset{\uparrow}{y i}: x \cdot y \in \mathbb{R}\} \\
\uparrow=1
\end{array}\right. \\
& \underset{\text { real part }}{\mathrm{Re}} \mathrm{Im}_{\text {imaginary }} \text { part }
\end{aligned}
$$

- Addition

Let $z=a+b i \quad w=c+d i \quad z+w=(a+c)+(b+d) i$
Additive Identity $z+0=(x+y i)+(0+0 i)=z \rightarrow 0$ is additive identity Additive luverse $z+(-1) z=0 \rightarrow-z$ is additive inverse

- Multiplication

Lot $z=a+b i \quad w=c+d i \quad z w=(a c-b d)+(a d+b c) i$
Multiplication Identity $z \cdot 1=(x+y i)(H 0 i)=x+y i=z \quad \rightarrow 1$ is m-id Multiplication Inverse

$$
\begin{aligned}
& z \cdot z^{-1}=1 \\
& z^{-1}=\frac{1}{z}=\frac{1}{a+b i}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i=\frac{a-b i}{a^{2}+b^{2}} \\
& \text { ex. }(1+2 i)^{-1}=\frac{1-2 i}{1^{2}+2^{2}}=\frac{1}{5}-\frac{2}{5} i
\end{aligned}
$$

- Properties of complex arithmetic (PCA)
© associativity of addition: $(u+v)+z=u+(v+z)$
(2) commutativity of addition: $u+v=v+u$
(2) additive identity: $0=0+0 i \quad \rightarrow \quad z+0=z$
(4) additive inverse : $z+(-z)=0 \quad z=a+b i \quad-z=-a-b i$
(1) associativity of unvtiplication: $(u v) z=u(v z)$
(b) commutativity of multiplication: $u v=v u$
(7) multiplicative inverses: $1=1+0 i \rightarrow z \cdot 1=z$
（8）multiplicative inverses：$z \cdot z^{-1}=1 . \quad(z=a+b i \neq 0) \quad z^{-1}=\frac{a-b v}{a^{2}+b^{2}}$
（a）distributivity：$z(u+v)=z u+z v$ ．
满久以上9个条件的： $\mathbb{C} \quad 1$ a kind of field
\times Field $⿹ 勹 巳 e^{今}: \mathbb{R} \cdot \mathbb{Z}_{p} \cdot \mathbb{Q}$
不包含： $\mathbb{Z}_{m}(m$ 砬prime $)$
ex．解 $6 z^{3}+(1+3 \sqrt{2} i) z^{2}-(11-2 \sqrt{2} i) z-6=0$
suppose $r \in \mathbb{R}$ is a solution

$$
\begin{aligned}
& 6 r^{3}+(1+3 \sqrt{2} i) r^{2}-(11-2 \sqrt{2} i) r-6=0 \\
& \left(6 r^{3}+r^{2}-11 r-6\right)+\left(3 \sqrt{2} r^{2}+2 \sqrt{2} r\right) i=0+0 i \\
& \left\{\begin{array}{l}
6 r^{3}+r^{2}-11 r-6=0 \\
3 \sqrt{2} r^{2}+2 \sqrt{2} r=0 \quad r=0 \quad r=-\frac{2}{3} \\
r=0 \quad 6 r^{3}+r^{2}-11 r-6=-6 \neq 0 \\
r=-\frac{2}{3} \quad 6 r^{3}+r^{2}-11 r-6=0 \quad V
\end{array}\right.
\end{aligned}
$$

10.2 Conjugate and Modulus

- def conjugate \bar{z}

$$
z=x+y_{i} \quad \bar{z}=x-y_{i}
$$

- Properties of conjugate $(P C J)$
() $\overline{(\bar{z})}=z$
(4) $\overline{z w}=\bar{z} \cdot \bar{w}$
(2) $\overline{z+w}=\bar{z}+\bar{w}$
(5) $z \neq 0 \quad \overline{\left(z^{-1}\right)}=(\bar{z})^{-1}$
(3) $z+\bar{z}=2 R e_{e}(z)$
$z-\bar{z}=2 \operatorname{Im}(z) i$
- def. modulus $|z|$

$$
z=x+y i \quad|z|=\sqrt{x^{2}+y^{2}}
$$

- Properties of Modulus $(P M)$
(1) $|z|=0 \Leftrightarrow z=0$
(4) $|z w|=|z||w|$
(2) $|\bar{z}|=|z|$
(5) $z \neq 0, \Rightarrow\left|z^{-1}\right|=|z|^{-1}$
(3) $\bar{z} \cdot z=|z|^{2}$
prof.(3): $\vec{z} \cdot z=(a-b i)(a+b i)=a^{2}+b^{2}=|z|^{2}$
proof(4): $|z w|=(z \cdot w) \cdot(\overline{z w})$ PMS

$$
=(z w)(\bar{z} \cdot \bar{w}) \quad p(J 2
$$

$$
=(z \bar{z})(w \bar{w}) \quad D C A
$$

$$
=|z|^{2}|w|^{2} \quad \text { by PM3 }
$$

$\because|z w|^{2} \&|z|^{2}|w|^{2}$ are non-negative real numbers.
\therefore we can take square woots:

$$
\begin{aligned}
& \quad|z w|=|z \| w| \quad|z w|=-|z||w|(x) \\
& \therefore \quad|z w| \geqslant 0 \quad|z||w| \geqslant 0 . \\
& \therefore \quad|z w|=|z||w|
\end{aligned}
$$

ex．Let $z \cdot w \in C$ ．Prove $|z+w|^{2}+|z-w|^{2}=2|z|^{2}+2|w|^{2}$
Prof．Let $z . w \in \mathbb{C}$

$$
\begin{aligned}
& |z+w|^{2}+|z-w|^{2} \\
= & (z+w)(\overline{z+w})+(z-w)(\overline{z-w}) \quad \text { by } P M \\
= & (z+w)(\bar{z}+\bar{w})+(z-w)(\bar{z}-\bar{w}) \quad \text { by } P C J \\
= & z \cdot \bar{z}+z \bar{w}+\bar{z} w+w \bar{w}+z \bar{z}-z \bar{w}-\bar{z} w+w \bar{w} \\
= & 2 z \bar{z}+2 w \bar{w} \\
= & 2|z|^{2}+2|w|^{2} \quad \text { by } P M
\end{aligned}
$$

－Corollary

$$
\begin{aligned}
& \frac{z_{1}+z_{2}+\cdots+z_{n}}{z_{1} \cdot z_{2} \cdots z_{n}}=\overline{z_{1}}+\bar{z}_{2}+\cdots+\overline{z_{1}} \cdot \bar{z}_{2} \cdots \overline{z_{n}} \\
& \left|z_{1} \cdot z_{2} \cdots z_{n}\right|=\left|z_{1}\right|\left|z_{2}\right| \cdots\left|z_{n}\right|
\end{aligned}
$$

－Triangle Inequality $(T Z \theta)$
$\forall z \cdot w \in \mathbb{C}$ ．We have $|z+w| \leqslant|z|+|w|$
proof：
Let $z=x+y i \quad w=u+v i$

$$
\begin{aligned}
& -w=-u-v i \quad z+w=z-(-w)=(x-(-u))+(y-(-v)) i \\
& |z+w|=|z-(-w)|=\sqrt{(x-(-u))^{2}+(y-(-v))^{2}}
\end{aligned}
$$

let $A(0,0) \quad B(z):(x, y) \quad(1-w):(-u,-v)$
已知，在 $\triangle A B C$ 中，$l_{B C} \leq l_{A B}+l_{A C}$
$\because B y P_{y}$ thagorean Theorem．$l_{A B}=|z|, l_{A L}=|-w|=|w|, l_{B C}=|z-(-w)|=|z+w|$
$\therefore|z+w| \leqslant|z|+|w|$
10.3 The Complex Plane and Polar Form

- def. Argand plane

\leftarrow "complex plane" "Argand plane"
- Cartesian form

$$
z=x+y i
$$

- Cartesian coordinates (x, y)
- polar form

$$
z=r(\cos \theta+i \sin \theta)
$$

$$
\left(r \geqslant 0, r=|z|=\sqrt{x^{2}+y^{2}}\right) \quad \theta=\frac{y}{x} \quad \text { argument of } z
$$

- polar coordinates (r, θ)
ep. cartesian form: $z=-3 \sqrt{2}+3 \sqrt{6} i$
cartesian coordinates: $(-3 \sqrt{2}, 3 \sqrt{6})$
polar coordinates: $r=\sqrt{x^{2}+y^{2}}=6 \sqrt{2} \quad \tan \theta=\frac{y}{x}=\frac{3 \sqrt{6}}{-3 \sqrt{2}}=-\sqrt{3} \quad \theta=\frac{2 \pi}{3}$

$$
(6 \sqrt{2},-\sqrt{3})
$$

polar form: $r(\cos \theta+i \sin \theta)=r(\cos (\theta+2 k \pi)+i \sin (\theta+2 k \pi))$

- Polar Multiplication in C (PMC)

$$
\begin{aligned}
& z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \quad z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& \text { ex. calculate }(1-i) \times(-1+i) \\
& \text { polar form: } 1-i=\sqrt{2}\left(\cos \left(\frac{\pi \pi}{4}\right)+i \sin \left(\frac{\pi \pi}{4}\right)\right) \\
& \quad 1+i=\sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)
\end{aligned} \begin{aligned}
&(1+i)(1-i)=\sqrt{2} \cdot \sqrt{2}\left(\cos \frac{5 \pi}{2}+i \sin \frac{5 \pi}{2}\right) \\
&=2(0+i) \\
&=2 i
\end{aligned} \quad \begin{aligned}
& (1-i)(-1+i)=-1+i+i-i^{2}=2 i
\end{aligned}
$$

10.4 De Moire's Theorem

- Pe Moire's Theorem (DMT)

$$
\theta \in \mathbb{R} . \quad n \in \mathbb{Z} . \quad(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

ex. compute $\left(-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{-1000}$
write in polar form. $r=\sqrt{\left(-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}=1$

$$
\begin{aligned}
& \tan \theta=\frac{\sqrt{2}}{-\sqrt{2}}=-1 \quad \therefore \theta=\frac{3 \pi}{4} \\
& \therefore\left(-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{-1000}=\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)^{-1000} \\
&= \cos \left(-1000 \cdot \frac{3 \pi}{4}\right)+i \sin \left(-1000 \cdot \frac{3 \pi}{4}\right) \quad \text { by PMT } \\
&=1+0 i \\
&=1
\end{aligned}
$$

- Corollary to DMT.

$$
\forall z \in \mathbb{C}, \quad z=r(\cos \theta+i \sin \theta) \quad 2^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

For $z \in \mathbb{C} . \quad z=r(\cos \theta+i \sin \theta)$

* when $z=0 \quad z^{-1}$ ONE

10．5 Complex n^{-t} th Roots
－def complex $n^{\text {th }}$ roots of a
$a \in \mathbb{C} \quad n \in \mathbb{N}^{+} \quad 2^{n}=a$
z is complex $n^{\text {th }}$ roots of a
ex．Find complex $6^{\text {th }}$ roots of -6% cartesian form $z^{b}=-64$
polar form．$-64=64(\cos \pi+i \sin \pi)$
by DMT．$z^{6}=r^{6}(\cos 6 \theta+i \sin 6 \theta)$ ．

$$
\begin{aligned}
\therefore & r^{6}(\cos 6 \theta+i \sin 6 \theta)=64(\cos \pi+i \sin \pi) \\
& r^{6}=64 \quad r=2 . \\
& 6 \theta=\pi+2 k \pi \quad \theta=\frac{\pi}{6}+\frac{k \pi}{3} \\
& \theta=\frac{\pi}{6}, \frac{3 \pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{9 \pi}{6}, \frac{11 \pi}{6}, \frac{\lambda \pi}{6}\left(=\frac{\pi}{6}\right)
\end{aligned}
$$

\therefore sols are：

$$
\begin{aligned}
& z_{0}=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=\sqrt{3}+i \\
& z_{1}=2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=2 i \\
& z_{2}=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=-\sqrt{3}+i \\
& z_{3}=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{4}\right)=-\sqrt{3}-i \\
& z_{4}=2\left(\cos \frac{\pi}{\pi}+i \sin \frac{1 \pi}{6}\right)=-2 i \\
& z_{5}=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=\sqrt{3}-i
\end{aligned}
$$

－Complex n－th Roots Theorem（CNRT）

$$
\forall a \in \mathbb{C} \quad a=r(\cos \theta+i \sin \theta) \quad n \in \mathbb{N} .
$$

the complex n－th roots of a are：$\sqrt[n]{r}\left(\cos \left(\frac{\theta+2 k \pi}{n}\right)+i \sin \left(\frac{\theta+2 k \pi}{n}\right)\right) \quad k=0,1, \cdots, n-1$
（1）阶有非0总数有n 个 不同的 Wt root．
（2）roots lie on a circle 半经：$\sqrt[n]{r}$ uniformly spaced out of angle $\frac{\alpha \pi}{n}$
（3）proof：pg．174－175．
ex．solve $z^{8}=1$ for $z \in \mathbb{C}$（ use（NRT）
By inspection $z=1$ is a sol．
By CNRT，there are 8 solutions．
and solutions lies on circle with radius 1.
unifunmiy spaced out by angle $\frac{2 \pi}{8}=\frac{\pi}{4}$
\therefore Solutions are：

$$
\begin{aligned}
& z_{0}=1 \\
& z_{1}=1 \times\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \\
& z_{2}=1 \times\left(\cos \frac{3 \pi}{4}+i \sin \frac{\frac{3 \pi}{4}}{4}\right)=-\frac{1}{\sqrt{2}}+\frac{9}{\sqrt{2}} \\
& z_{3}=\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \\
& z_{4}=\cos \pi+i \sin \pi=-1 \\
& z_{5}=\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}=-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}} \\
& z_{6}=\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}=-i \\
& z_{7}=\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}=\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}
\end{aligned}
$$

ex．Solve $z^{*}=-27 \bar{z}$（CNRT doit apply）因为r美负数
let $z=r(\cos \theta+i \sin \theta)$

$$
\begin{aligned}
z^{4} & =r^{4}(\cos 4 \theta+i \sin 4 \theta) \quad \text { by } P M T \\
\bar{\Sigma} & =r(\cos \theta-i \sin \theta) \\
-27 & =27(\cos \pi+i \sin \pi)
\end{aligned}
$$

$z^{4}=-27 \bar{z}$ is equivallent to

$$
\begin{aligned}
r^{4}(\cos 4 \theta+i \sin 4 \theta) & =27(\cos \pi+i \sin \pi) \cdot r(\cos \theta-i \sin \theta) \\
& =27 r(\cos (\pi-(\theta)+i \sin (\pi-\theta)) \text { by PMC }
\end{aligned}
$$

$$
\begin{array}{ll}
r^{4}=27 r & r\left(r^{3}-27\right)=0 \quad \Rightarrow \quad r=0 \quad r=3 . \\
4 \theta=\pi-\theta+2 k \pi & \theta=\frac{\pi}{5}+\frac{2 k \pi}{5}
\end{array}
$$

\therefore sols are：

$$
\begin{aligned}
& z_{0}=3\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right) \\
& z_{1}=3\left(\cos \frac{3 \pi}{5}+i \sin \frac{\pi}{5}\right) \\
& z_{2}=3\left(\cos \frac{5 \pi}{5}+i \sin \frac{\pi}{5}\right)=-3 \\
& z_{3}=3\left(\cos \frac{5 \pi}{5}+i \sin \frac{\pi \pi}{5}\right) \\
& z_{4}=3\left(\cos \frac{9 \pi}{5}+i \sin \frac{9 \pi}{5}\right) \\
& z_{5}=0
\end{aligned}
$$

10. 6 Square Roots and quadratic formula

- Quadratic Formula (OF)
$\forall a . b . c \in \mathbb{C} \quad a \neq 0$. sol of $a z^{2}+b z+c=0$ are

$$
z=\frac{-b \pm w}{2 a}
$$

where w is a sol to $w^{2}=b^{2}-4 a c$
ex. Solve $z^{2}-2 z+1+8 i=0 \quad z \in \mathbb{C}$
by quadratic formula. $z=\frac{-(-2) \pm \omega}{2 \cdot 1} \quad \omega^{2}=(-2)^{2}-4 \cdot 1 \cdot(1+8 i)=-32 i$
let $\omega=a+b i$

$$
\begin{aligned}
& a^{2}+2 a b i-b^{2}=-32 i \\
& \left\{\begin{array} { l }
{ a ^ { 2 } - b ^ { 2 } = 0 } \\
{ 2 a b = - 3 2 . }
\end{array} \quad \left\{\begin{array} { l }
{ a = 4 } \\
{ b = - 4 }
\end{array} \quad \left\{\begin{array}{l}
a=-4 \\
b=4
\end{array}\right.\right.\right.
\end{aligned}
$$

solutions are $z=\frac{2 \pm(4-4 i)}{2} \quad z=3-2 i \quad z=-1+2 i$

11．1 Introduction of polynomials
－field \mathbb{F}
where the coefficients will always come from a special type
－the rational numbers \mathbb{Q} ，
－the real numbers \mathbb{R} ，
－the complex numbers \mathbb{C} ，
－the integers modulo a prime \mathbb{Z}_{p} ．
－Important property of field
$\forall \mathbb{F}, \forall a \cdot b \in \mathbb{F} \quad a b=0 \quad \Rightarrow \quad a=0$ or $b=0$
$\forall \mathbb{F}, \forall a \cdot b \in \mathbb{F} \quad a \neq 0$ and $b \neq 0 \Rightarrow a b \neq 0 \quad$（contrapositive）
－def．
polynomial in x over the field \mathbb{F} ：

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad(n \geqslant 0 \quad n \in \mathbb{Z})
$$

$x \rightarrow$ indeterminate
$a_{0} \cdot a_{1} \cdots a_{n} \rightarrow$ element
$a_{i} \rightarrow$ coefficient
$a_{i} x^{i} \rightarrow$ term．
largest power of $x \rightarrow$ degree
分类 $\left\{\begin{array}{l}\text { complex polynomial／polynomial over } \mathbb{C} \text { 带 C in } \\ \text { real polynomial } \\ \text { rationed polynomial 实数 } \\ \text { 有理数 }\end{array}\right.$

$$
\left\{\begin{array}{l}
\text { zero } \sim \\
\text { constant } \sim\left\{\begin{array}{l}
\text { linear } \sim \\
\text { quadratic } \sim \\
\text { cubic } \sim
\end{array}\right.
\end{array}\right.
$$

11.2 Arithmetic with Polynomials

Let $f(x)=\sum_{i=0}^{m} a_{i} x^{i} \quad g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ be polymomiods over $\mathbb{F}[x]$

- Addition

$$
f(x)+g(x)=\sum_{k=0}^{\operatorname{mox}\left\{\sum_{n}, x_{j}\right.}\left(a_{k}+b_{k}\right) x^{k} \quad \begin{cases}k>m & a_{k}=0 \\ k>n & b_{k}=0\end{cases}
$$

-Multiplication

$$
\begin{aligned}
& f(x) g(x)=\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i} b_{j} x^{i+j}=\sum_{l=0}^{m+n} c_{l} x^{l} \\
& c_{l}=a_{0} b_{l}+a_{1} b_{l-1}+\cdots+a_{l} b_{0}=\sum_{i=0}^{l} a_{i} b_{l-i}
\end{aligned}
$$

- Degree of a Product (DP)
$\forall \mathbb{F} . \quad f(x) \& g(x)$ are non-zero polynomials in $\mathbb{F}[x]$.

$$
\operatorname{deg} f(x) g(x)=\operatorname{deg} f(x)+\operatorname{deg} g(x)
$$

- Division Algorithm for Polynomials (DAP)
$\forall \mathbb{F}, f(x) \& g(x)$ are polynomials in $\mathbb{F}[x] . \quad g(x)$ non-zero \exists unique $q(x) \& r(x) \operatorname{in} \mathbb{F}[x]$ st.:

$$
f(x)=q(x) g(x)+r(x)
$$

$r(x)$ is zero polynomial $\operatorname{deg} r(x)<\operatorname{deg} g(x)$
ex. Prove $(x-1) \nmid x^{2}+1$ in $\mathbb{R}[x]$
proof: Assume, for sate of contradiction, $x-1 \mid x^{2}+1$ then $\exists q(x) \in \mathbb{R}[x]$ set. $x^{2}+1=q(x)(x-1)$
By DP, dy $(q(x))=1 \quad$ So $q(x)=a x+b$ for some $a . b \in \mathbb{R}$ $x^{2}+1=(a x+b)(x-1)=a x^{2}-a x+b x-b$
comparing coefficients:

$$
\begin{array}{ll}
x^{2}: \quad 1=a \\
x^{\prime}: \quad 0=-a+b \\
x^{0}: \quad b=-1
\end{array}
$$

for sub in $x^{\prime}, \quad 0=-2$ contradicts．
\therefore Statement is true
ex．Prove $(x-1) \nmid\left(x^{2}+1\right)$ in $\mathbb{R}[x]$ ．Use PAP to find $q(x)$ \＆$r(x)$长除法。

$$
x-1 \begin{array}{r}
x+1 \\
\frac{x^{2}+0 x+1}{x^{2}-x} \\
\frac{x+1}{2}
\end{array}
$$

$$
\begin{aligned}
& \text { synthetic } \\
& \text { division }
\end{aligned}
$$

coefficient of quotient
\mathbb{C} や可以用长除法
11.3 Polynomials
－Remainder Theorem（RT）
$\forall F, \quad \forall f(x) \in \mathbb{F}[x] \quad \forall c \in \mathbb{F}$
$f(x)=(x-c) \cdots f(x)$ 中 in o constant
proof：
Let \mathbb{F} be a fired，$f(x) \in \mathbb{F}[x], c \in \mathbb{F}$ ．
By DAP，there exist unique $q(x), r(x) \in \mathbb{F}[x]$ ．

$$
\text { sit } f(x)=q(x)(x-c)+r(x)
$$

where $r(x)=0$ ．or $\operatorname{deg}(r(x))<d y(x-c)$
Thus $r(x)=0$ or $\operatorname{deg}(r(x))=0$
$\therefore r(x)$ is constant．Let $r(x)=r_{0}$ where r_{0} is constant \mathbb{F} ．
Thus $f(x)=q(x)(x-c)+r_{0}$
substituting $x=c: \quad f(c)=q(c)(c-c)+r_{0}=r_{0}$
\therefore remainder is comentact of $f(u)$
ex．remainder of $f(x)=4 x^{3}+2 x+5 \geqslant(x+6)$ is？
By RT．remainder $=f(-6)=-871$
－Factor Theorem（FT）
$\forall f(z) \in$ complex polynomials．dey $f(z) \geqslant 1$ ．
$\exists z_{0} \in \mathbb{C}$ sit．$f\left(z_{0}\right)=0$
－def．Reducible／Irreducible
reducible polynomial ： \bar{y} 拆成 2 个plymomid 相来的形式
ep．$f(x)=x^{2}+1$ is irreducible in $\mathbb{R}[x]$ ．
is reducible in $C[x] \quad(x-i)(x+i)$

- def Multiplicity.

The multiplicity of root u of polynomial $f(x)$ is the largest positive integer k. sit. $(x-c)^{k}$ is a factor of $f(x)$
ex. $h(x)=x^{4}+2 x^{2}+1=(x-i)^{2}(x+i)^{2}$
$\therefore i$ \& $-i$ are roots of $h(x)$ with multiplicity?

- Fundamental Theorem of Algebra (FTA)
$\forall f(z) \quad t$ complex polynomials, $\operatorname{deg} f(z) \geqslant 1$.
$\exists z_{0} \in \mathbb{C}$ s.t $f\left(z_{0}\right)=0$
Every won-constant polynomial $f(z) \in \mathbb{C}[x]$ has a root in \mathbb{C} "
- Complex Polynomials of degree n have n roots $(C P N)$
$\forall n \in \mathbb{Z} \quad n \geqslant 1 . \quad \forall f(z) \in$ complex polynomials
$\exists c \in \mathbb{C}(c \neq 0)$ sit.

$$
f(z)=c\left(z-c_{1}\right)\left(z-c_{2}\right) \cdots\left(z-c_{w}\right)
$$

roots of $f(z): c_{1}, c_{2}, \cdots, c_{n}$
ex. wite $f(x)=i x^{3}+(3-i) x^{2}+(-3-2 i) x-b$ as a product of irreducible polynomial in $\mathbb{C}[x]$ (hire: -1 is a root) $\because-1$ is a root of $f(x)$
\therefore by FT. $\quad x+1 \mid f(x)$

$$
\therefore f(x)=(x+1)\left(i x^{2}+(3-2 i) x-6\right)
$$

roots of $i x^{2}+(3-2 i) x-6$ are $x=\frac{-b \pm w}{2 a}$ where $w^{2}=b^{2}-4 a c$
↔确认是高次父否带 i
－Proposition 7.
For all integer \mathbb{F} ，all integers $n \geqslant 1$ and all $f(x) \in \mathbb{F}[x]$ of degree n ．The polynomial $f(x)$ has at most n roots最高次数为 $n \rightarrow$ 最多有 n 个 root

$$
\begin{aligned}
& \text { So, } x=\frac{-(3-2 i) \pm w}{2 i} \\
& w^{2}=(3-2 i)^{2}-4 i(-6)=9-12 i+4 i^{2}+24 i=5+12 i \\
& \omega= \pm(3+2 i) \\
& \therefore x=\frac{-(3-2 i) \pm(3+2 i)}{2 i} \rightarrow \begin{array}{l}
x=\frac{4 i}{2 i}=2 \\
x=\frac{-6}{2 i}=3 i
\end{array} \\
& f(x)=i(x+1)(x-2)(x-3 i)
\end{aligned}
$$

11．4 Real Polynomials and the Conjngat Root Theorem
－Conjugate Roots Theorem（CJRT）
$\forall f(x) \in$ polymomid with real coefficient．
$c \in \mathbb{C}$ is a root of $f(a) \Rightarrow \tau \in \mathbb{C}$ is a root of $f(x)$
会同时有 $x+i y$ 与 x－iy政个根
－Real Quadratic Factors（RQF）
$\forall f(x) \in$ polynumids with real wefficients．
$c \in \mathbb{C}$ is a root of $f(x) . \quad \operatorname{Im}(c) \neq 0$
$\Rightarrow \exists g(x) \in$ real quadratic polynomial $\quad q(x) \in$ real polynomial

$$
\text { sit } f(x)=g(x) q(x)
$$

＊$g(x)$ is irreducible in $\mathbb{R}[x]$
－Real Factors of Red Polynomials（RFRP）
$\forall f(x) \in$ positive polynomials．$f(x)$ 可恀成 linear 与 quadratic in 的来积
－Rational Roots Theorem（RRT）

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \quad n \geqslant 1
$$

$\frac{p}{q}$ is a rational root， $\operatorname{gcd}(p-q)=1 . \Rightarrow p\left|a_{0} \cap q\right| a_{n}$.

