

2.3
$$pmL$$

- pe Morgan's Laws (pmL)
1. $\neg(A \land B) \equiv (\neg A) \lor (\neg B)$
2. $\neg(A \lor B) \equiv (\neg A) \land (\neg B)$

- $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

- Distributive laws

Prove $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$

A	B	С	$B \lor C$	$A \wedge (B \vee C)$	$A \wedge B$	$A \wedge C$	$(A \land B) \lor (A \land C)$
T	T	T	T	Т	T	Т	Т
Τ	T	F	T	Т	T	F	Т
T	F	T	T	Т	F	Т	Т
Τ	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

$$E = \left((A \lor \neg B) \land \neg (\neg c) \right)$$

$$E = \left((A \lor \neg B) \lor \neg c \right)$$

$$E (\neg A \land B) \lor \neg c$$

$$E (\neg A \land B) \lor \neg c$$

$$E (\neg A \lor \neg C) \land (B \lor \neg c)$$

$$E (\neg c \lor \neg A) \land (\neg c \lor B)$$

$$E (\neg c \lor A) \land (\neg c \lor B)$$

 $-(A \land B) \Rightarrow C = (A \Rightarrow C) \land (B \Rightarrow C)$

l	A	B	$A \iff B$	$A \implies B$	$B \implies A$	$(A \implies B) \land (B \implies A)$
	T	T	T	T	T	Т
	T	F	F	F	Т	F
	F	T	F		F	F
	F	F	T	T	Т	Т

De Morgan's Laws (DML)

- $\neg (A \lor B) \equiv \neg A \land \neg B.$
- $\neg (A \land B) \equiv \neg A \lor \neg B.$

Commutative Laws

- $A \lor B \equiv B \lor A$.
- $A \wedge B \equiv B \wedge A$.

Associative Laws

- $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C.$
- $A \lor (B \lor C) \equiv (A \lor B) \lor C$.

Distributive Laws

- $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C).$
- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C).$

Some more properities

• $A \Rightarrow B \equiv \neg A \lor B$ regation of implication

Useful Tool Logical

- $A \lor \neg A \equiv T$
- $A \wedge \neg A \equiv F$

- transitivity of dividibility LTD)
Value 2, if all & blc, then all
Purfield o.b.
$$\in \mathbb{Z}$$
 be orbitrony.
Now blc means $c=bb$ for since $b\in\mathbb{Z}$
all be means $b=ma$ for some $ma\mathbb{Z}$
Then $c=bb=ckm3a$. Here all c since $km62$
Value 2. if all or all c , then all bc
 $(A \times B \Rightarrow c) = ((A \Rightarrow c) \land (B \Rightarrow c))$
Value 62. if all & all c , then $VX \neq C$. a ($bX + cy$)
Purfield $a.b.c \in \mathbb{Z}$, and userne all b and all c .
 $am=b$ & $at=c$ given any $X, y \in \mathbb{Z}$. We have $(bx+cy) = a(xm+yk)$
Hence $a(bx+cy)$.
- converse of Dic
Value 62 of all $bx+cy$ for all $b, q \in c$.
Proof $cd a b c \in \mathbb{Z}$
Assume $a(bx+cy)$.
Value 62 of all $bx+cy$ for all $b, q \in c$.
Now this is true when $x=1$. $y=0$ So $a(b)+(c)$ is all b .
Also, this is true when $x=0$ $y=1$. So $a(b)+(c)$ is all b .
Also $a, this is true when $x=0$ $y=1$. So $a(b)+(c)$ is all b .
Also $c \in \mathbb{Z}$ of $a, c \in \mathbb{Z}$ if $a(b+c)$ and $a(c)$.
Therefore $a(b, a, d) c$ is wreaged
 $a(b, c) \in \mathbb{Z}$. if $a(b+c) = a(c)$ is all c .
Therefore $a(b, a, d) c$ is wreaged
 $a(b) = a(b+c) = a(c) = a(c)$ is a $b = a(c) = a(c)$$

3.5 Proof by Contrapositive
- Just A>B, replace with "(-B) > (-A)
assume 7B true, 7A also true
ex.
$$\forall x \in \mathbb{R}$$
. $\pi^{2} - 7x + 10 \ge 0 \Rightarrow x \le 5 \text{ or } x \ge 4$
Prove by interpositive: $3 \le x \le 4 \Rightarrow x^{2} - 7x + 10 \le 0$
 $x^{2} - 7x + 10 = (x - 2)(x - 5)$
 $7x \ge 4 - 3 \ge 5 = (x - 3) + 1 \ge 0$
 $3x \le 4 - 3 \ge 5 = (x - 4) - 1 \le 0$
Since the contrapositive is true, the original implication is true. OED
3.6 Proof by Contradiction Just Ja
A is statement. A = 7A - $\frac{1}{2}$ A - $\frac{1}{2}$ A
A is statement. A = 7A - $\frac{1}{2}$ A - $\frac{1}{2}$ B
A is obvious followings follow. "A - (-A) is true" is contradiction
ex. Prove Jz is irreliand IF - A follow
 y contradiction: Suppose JE EQ. (A - 10 - 2)
 $2 = \frac{a^{2}}{12}$ $a^{2} = 2b^{2}$ $\Rightarrow a$ is even. Let $a = 2t$
 $4t^{2} = 2b^{2}$ $b^{2} = 2t^{2}$ $\Rightarrow b$ is also even.
 $a \ge b$ both over contradicts to a b relatively prime
The contradiction is forling. So, the statement is true.

• $A \Rightarrow B \equiv \neg A \lor B$ negation of implication

ex. Let $n \in \mathbb{Z}$, prove $2 \lfloor (n^4 - 3) \rfloor$ if and only if $4 \lfloor (n^2 + 3) \rfloor$ if $A \Leftrightarrow B$ true Prove: (=>) 0 If n=2k for some k (i.e n is even), then $n^{4}-3=1bk^{4}-3$ which is odd $2 \lfloor (n^4-3) \rfloor$ is always folse, $2 \lfloor (n^4-3) \rceil \Rightarrow 4 \lfloor (n^2+3) \rfloor$ is true $\cdot 2 \rfloor n=2k+1$ for some k, then $n^{4}-3=1bk^{2}+32k^{3}+24k^{2}+8k-2$ $n^{2}+3=4k^{2}+4k+4=4(k^{2}+k+1)$ divisible by 4.

(<) Conversely, if 4/(n2+3), we can't have not be even (otherwise we get n2+3 is odd, and hence 4/(n2+3)

Proof by elimination

$$A \Rightarrow (BVC) \equiv (A \land \neg B) \Rightarrow C$$

 $\equiv (A \land \neg C) \Rightarrow B$

Page 6 of 11

[6] 5. Use induction to prove that for every integer $n \ge 7$,

$$\sum_{i=7}^{n} i = \frac{n(n+1)}{2} - 21$$

Proof. We begin by formally writing out our inductive statement

$$P(n): \sum_{i=7}^{n} i = \frac{n(n+1)}{2} - 21$$

Base Case We verify that P(7) is true where P(7) is the statement

$$VIC = \frac{7}{7} - \frac{7}{7}k$$
 true $P(7): \sum_{i=7}^{7} i = \frac{7(7+1)}{2} - 21$

The left hand side evaluates to $\sum_{i=7}^{7} i = 7$ and the right hand side evaluates to $\frac{7(7+1)}{2} - 21 = 28 - 21 = 7$ so P(7) holds.

Inductive Hypothesis We assume that the statement

Assume
$$P(k) : \sum_{i=7}^{k} i = \frac{k(k+1)}{2} - 21$$

is true for some integer $k \geq 7$.

Inductive Conclusion Now we show that the statement P(k+1) is true. That is, we show

$$V_{1}$$
 P ($k+1$) fme $P(k+1): \sum_{i=7}^{k+1} i = \frac{(k+1)(k+2)}{2} - 21$

Now

$$\sum_{i=7}^{n} i = \left[\sum_{i=7}^{k} i\right] + [k+1] \qquad \text{(partition into } P(k) \text{ and other)}$$
$$= \left[\frac{k(k+1)}{2} - 21\right] + [k+1] \qquad \text{(Inductive Hypothesis)}$$
$$= \frac{k(k+1) + 2(k+1)}{2} - 21 \qquad \text{(arithmetic)}$$
$$= \frac{(k+1)(k+2)}{2} - 21 \qquad \text{(factor)}$$

The result is true for n = k + 1, and so holds for all n by the Principle of Mathematical Induction.

4.3 Binomial Theorem
- Summations

$$\bigcirc \sum_{i=1}^{n} \chi_{i} = \chi_{m} + \chi_{n+1} + \dots + \chi_{n}$$

$$\bigcirc \sum_{i=1}^{n} (\chi_{i} = C \sum_{i=1}^{n} \chi_{i})$$

$$\bigcirc \sum_{i=1}^{n} (\chi_{i} = C \sum_{i=1}^{n} \chi_{i}) = \sum_{i=1}^{n} \chi_{i} + \sum_{i=1}^{n} \chi_{i}$$

$$\bigcirc \sum_{i=1}^{n} (\chi_{i} = C \sum_{i=1}^{n} \chi_{i}) = \sum_{i=1}^{n} \chi_{i} + \sum_{i=1}^{n} \chi_{i}$$

$$\bigcirc \sum_{i=1}^{n} (\chi_{i} = \chi_{i}) = \sum_{i=1}^{n} \chi_{i} + \sum_{i=1}^{n} \chi_{i}$$

$$= \frac{1}{2} \operatorname{Products}$$

$$= \frac{1}{2} \operatorname{Produ$$

- Binomial series

- Pascal's Identity
For all positive
$$n, m \in \mathbb{Z}$$
. $m \in n$. $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$
 $\binom{n-1}{m-1} + \binom{n-1}{m} = \frac{(n-1)!}{(n-m)!(m-1)!} + \frac{(n-1)!}{(n-m-1)!m!}$
 $= \frac{(n-1)!m!(n-1)!(n-m)!}{(n-m)!m!}$
 $= \frac{(n-1)!n!}{(n-m)!m!}$
 $= \frac{n!}{(n-m)!m!}$
 $= \binom{n}{m}$
- Binomial Theorem 1
For all integers $n \ge 0$ and all real number x . $(Hx)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$
Proof. We proceed by induction on n .

Base case: At n=1,
$$(a+b)' = a+b = {\binom{n}{2}} a'b'' + {\binom{n}{2}} a'b'' = \sum_{k=0}^{j} {\binom{k}{j}} a^{j+k} b^{k}$$

Inductive step: Assume the statement holds at n20 and lot us use this to
prove it holds at n+1

$$(1+x)^{n+1} = (1+x) (1+x)^n = (1+x) \sum_{k=0}^n \binom{n}{k} x^k$$

$$= \sum_{k=0}^n \binom{n}{k} x^k + x \sum_{k=0}^n \binom{n}{k} x^k$$

$$= \sum_{k=0}^n \binom{n}{k} x^k + \sum_{k=0}^n \binom{n}{k} x^{k+1} \quad \text{let } +11 = j \quad k=j-1$$

$$\Rightarrow = \sum_{k=0}^n \binom{n}{k} x^k + \sum_{j=1}^n \binom{n}{(j-1)} x^j$$

$$= \binom{n}{0} x^0 + \sum_{k=1}^n \binom{n}{k} x^k + \sum_{j=1}^n \binom{n}{(j-1)} x^{j} + \binom{n}{n} x^{n+1}$$

$$= \binom{n}{0} x^0 + \sum_{k=1}^n \binom{n}{k} x^k + \sum_{j=1}^n \binom{n}{k-1} x^k + \binom{n}{n} x^{n+1}$$

$$= \binom{n}{0} x^0 + \sum_{k=1}^n \binom{n+1}{k} x^k + \binom{n}{n} x^{n+1}$$
By Pascel's Identity
$$= \binom{n+1}{0} x^0 + \sum_{k=1}^n \binom{n+1}{k} x^k + \binom{n+1}{n} x^{n+1}$$

$$= \binom{n+1}{0} x^0 + \sum_{k=1}^n \binom{n+1}{k} x^k + \binom{n+1}{n} x^{n+1}$$

POML. (principal of mathematical induction) $P(a) \Rightarrow P(a+1)$

- Binomial Theorem 2

For any a b ER, and any non-negative
$$n \in \mathbb{Z}$$
:
 $(a+b)^n = \sum_{k=0}^n {\binom{n}{k}} a^k b^{n+k}$
Proof: $case1$ $(a=0):$
 $(a+b)^n = b^n$, and $\sum_{k=0}^n {\binom{n}{k}} a^k b^{n-k} = {\binom{n}{0}} \times 1 \times b^n = b^n$
 $case 2$ $(a\neq 0):$
 $(a+b)^n = a^n (1+\frac{b}{a})^n = a^n \sum_{k=0}^n {\binom{n}{k}} (\frac{b}{a})^k$
 $= \sum_{k=0}^n {\binom{n}{k}} a^n \frac{b^k}{a^k}$
 $= \sum_{k=0}^n {\binom{n}{k}} b^k a^{n+k}$

ex. Suppose
$$x_1 = 3$$
 $x_2 = 5$... $x_n = 3 x_{n-1} + 2 x_{n-2}$ for $n \ge 3$.
Prove $x_n < 4^n$ for all positive integers n .
Proof: By induction on n .
Let $p(n)$ be the open sentence. $x_n < 4^n$

Base case : Prive P(1) and P(1)

$$\chi_{1}=3$$
 and $\psi^{1}=1$, $5, \chi_{1}\in \psi^{1}$, P(1) is true
 $\chi_{2}=5$ and $\psi^{2}=1$, $5, \chi_{3}\in \psi^{2}$, P(1) is true
Inductive Stop : Let k be an arbitrary induced number
Assume P(1) is true for all integres i , let ψ^{2}
 $= \chi_{1}^{2} \leq \psi^{2}$ for $i = 1.2, ..., k$
Let's prove P(1+1) $\chi_{1+1} \leq \psi^{1+1}$
 $= \chi^{1+1}$
 $\chi_{1+1} = 5\chi_{1} + \chi_{2} + 1 \leq 2\chi_{2} + 1\chi_{2} + 1\chi_{1}$
 $= \psi^{1+1}$, $\chi_{1+1} = \chi_{1} + \chi_{1}$

CX

Page 7 of 11

Name:

- [6] 6. Let the sequence $\{x_i\}$ be defined by
 - $x_0 = 3, x_1 = 2$, and
 - $x_n = 3x_{n-1} 2x_{n-2}$.

Prove that $x_n = 4 - 2^n$ for all integers $n \ge 0$.

Proof. We will use Strong Induction. Our statement P(n) is

 $P(n): x_n = 4 - 2^n$

Base Case We verify that P(0) and P(1) are true.

$$P(0): x_0 = 4 - 2^0$$

From the definition of the sequence $x_0 = 3$. The right side of the statement P(0) evaluates to 3 so P(0) is true. $P(1): x_1 = 4 - 2^1$

From the definition of the sequence
$$x_1 = 2$$
. The right side of the statement $P(1)$ evaluates to 2 so $P(1)$ is true.

Inductive Hypothesis We assume that the statement P(i) is true for $1 \le i \le k, k \ge 1$.

$$P(i): x_i = 4 - 2^i$$

Inductive Conclusion Now we show that the statement P(k+1) is true.

$$P(k+1): x_{k+1} = 4 - 2^{k+1}$$

$x_{k+1} = 3x_k - 2x_{k-1}$	(by the definition of the sequence)
$= 3 \cdot (4 - 2^k) - 2 \cdot (4 - 2^{k-1})$	(by the Inductive Hypothesis)
$= 12 - 3 \cdot 2^k - 8 + 2^k$	(expand)
$=4-2\cdot 2^k$	
$=4-2^{k+1}$	

The result is true for n = k+1, and so holds for all n by the Principle of Strong Induction.

5.3 Set Uperations $SUT = \{x \in \mathcal{U} : x \in S \lor x \in T\}$ 这来 Union A& intersection SNT = {xel = xeS n xeT} 美采 set - difference S-T = {x6U: xES ∧ x∉T} * & complement $\overline{S} = \{ x \in \mathcal{U} : x \notin S \}$ 3 K subset SET Let $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $C = \{3, 5, 7, 10\}$, and $D = \{1, 3, 6, 7, 8\}.$ Calculate e_{X} 1. $C \cup D = \{1, 3, 5, 6, 7, 8, 10\}$ 2. $C \cap D = \{3, 7\}$. 3. C - D = 25, 104. $D - C = \{1, 0, 8\}$ 5. $\bar{C} = \{1, 2, 4, 6, 8, 9\}$ 6. $\{x \in \mathcal{U} : (x \in D) \implies (x \in C)\} = \{2, 3, 4, 5, 7, 9, 10\}$ 7. |D - C| = 3J. 4 Subsets of a set - def. subsets S is a subset of set T, Gip SST. = T is a superset of S S is a proper subset of set T. 31755T 三满义 subset. 但 S≠T ex. A & B are sets. Prove A-(A-B) SAAB Let x & U. Assume x6A- (A-B) So x6A x × (A-B) $= \chi \in A \wedge (\neg \chi \in (A - B))$ = x + A ~ (7 (x + A ~ x + B)) $= \chi \in A \land (\chi \neq A \lor \chi \in B)$ Since x & A is true. X & A is false. X & B is true Thus xt (A ~ B) A-LA-B) SAAB - def. Set equality. We say two sots S&T are equal. 等37- S=T. 相同元系

b) The division algorithm
- bounds by divisibility (BBD)
Proposition
$$\forall x \in \mathbb{R}$$
 $x \leq |x|$ (x)
For all integers $a \otimes b$, if bla and $a \neq 0$, then $b \leq |a|$
proof: but $a \otimes b$ he any integers Assume $a\neq 0$ and $b|a$.
Then $a = qb$ for $\# 0 \otimes b = 2q$.
 $\Rightarrow |q| = 1$ So $|a| = |qb| = |q| |b| = 1 + |b| = b$
- The division algorithm (DA)
 $\forall a \cdot b \in \mathbb{Z}$. $\exists q \neq \mathbb{Z}$. $(q \neq r)$ st $a = qb + r$ over b
 eq $a = 47$ both \Rightarrow $(q) = 2\times 1b + (5)$
proof: by contradiction
For uniqueness, assume there exist $q_1 \cdot q_2 \cdot r_1 \cdot r_2 \in \mathbb{Z}$.
where $0 \leq r_1 \leq b$ $3 \cdot b = (r_1 - r_2) \leq b$ (895)
 $\therefore b = (q_1 - q_2)b + (r_1 - r_2)$ (\$5)
we have $0 \leq r_1 \leq b$ $3 \cdot b = (r_1 - r_1) < b$ (895)
 $\therefore b = (r_1 - r_2) < b = (r_1 - r_2) < b$
Finally, pet $r_1 = r_2$ in (\$5)
 $0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b > 0 = (q_1 - q_2)b + to$
 $\therefore b$

b.2 The greatest common divisor (ged)
- 61CD The greatest common divisor
$$\frac{1}{2} \times 5128$$

definition: a.b.70. At ged : d cde N>
 0 d[a & d[b.
 (0) if c is any other divisor, then ced
 x if a=0=b. ged (0,0)=0 ged (0,0)=15 ged (-3,0)=3
- 6000 with semainders (600 WP) $0 \le r \le b$
 $\forall a.b. q, r \in N$ if a=qb+r. then ged (a,b) = ged (b,r).
ex. ged (72,49) x b&r ii $\frac{1}{2} \times \frac{1}{2} \times \frac$

b.3 Certificate of correctness and Bezoutt's Lemma
- GCD Chernotenization Theorem (Gio CD)
$$\rightarrow gcd \ddagger xb/needsd$$
.
Value $d \in \mathbb{Z}$ $d > 0$
if $d \mid a$ and $d \mid b$ and $\exists st \in \mathbb{Z}$ $as+bt = d$
Thus $d = gcd (a,b)$
proof: let $a, b, d \in \mathbb{Z}$. $d > 0$ $\exists s.t \in \mathbb{Z}$ $st. as+bt = d$
 $cose 1: a, f \circ ay b \neq 0$.
 $assume \exists s.t \in \mathbb{N}$. $st. as+bt = d \neq 0$
prove: c is arbitrag. $st c \mid a \land c \mid b$, when $\exists x = s$, $y = t$
by Dic. $c \mid (as+bt) = d$
 $cld \Rightarrow BBD \Rightarrow c \in [d]$, $c \in d$
 $case 2: a = b^{2} 0$
 $assume \exists s.t \in \mathbb{N}$. $st. as+bt = d.=0$
 $\therefore c \geq d$ $\therefore c \equiv d$
 $case 2: a = b^{2} 0$
 $assume \exists s.t \in \mathbb{N}$. $st. as+bt = d.=0$
 $\therefore 0 \leq t = 0$. $o \mid 0$. $\therefore d \mid a \mid d \mid b$
 $\therefore gcd (o, o) = 0$. $\therefore d = gcd (a, b)$
 \therefore $a.b \in \mathbb{Z}$. if $gcd (a, b) \neq 0$, and $\exists x.y \in \mathbb{Z}$. $st ax+by = gcd (a, b)$
then $gcd (x, y) = 1$
proof. Let $d = gcd (a, b) = ax+by$. So, $d \mid a , d \mid b$.
Let $\exists m, n \in \mathbb{Z}$ $a \geq dn$
Then $d = dmx + dny$. $mx+ny = 1$
 $\therefore Ga(p \mid CT)$. $as+bt = d \Rightarrow d = gcd (a, b)$
 $\neg i gcd (x, y) = 1$

ex let
$$n \in \mathbb{Z}$$
, have get $(n, n+1) = [$.
hat:
Let $n \in \mathbb{Z}$
is n & n+1 are connective integers.
Suppose $c(n + c(n+1))$
Ly DEC. $c((n+1)\times|+n\times|-1) = s = c(1)$
Therefore, $C = 1$ are $c = -1$.
In both cases, $c \in [$. So get $(n, n+1) = 1$ by duf.
GCD WR
In both cases, $c \in [$. So get $(n, n+1) = 1$ by duf.
GCD WR
In both cases, $c \in [$. So get $(n, n+1) = 1$ by duf.
GCD WR
In both cases, $c \in [$. So get $(n, n+1) = 1$ by duf.
GCD UR
In $r = 1 \times n + 0$ \therefore get $(n+1) = 1$ $(n+1) \times 1 + n \times (-1) = 1$
 $n = 1 \times n + 0$ \therefore get $(n, 0) = \frac{1}{2} = 1$ $(n+1) \times 1 + n \times (-1) = 1$
 $n = 1 \times n + 0$ \therefore get $(n, 0) = \frac{1}{2} = \frac{1}{2} = 1$ $(n+1) \times 1 + n \times (-1) = 1$
 $n = 1 \times n + 0$ \therefore get $(n, 0) = \frac{1}{2} = \frac{1}{2} = 1$ $(n+1) \times 1 + n \times (-1) = 1$
 $n = 1 \times n + 0$ \therefore get $(n, 0) = \frac{1}{2} = 1$ $(n+1) \times 1 + n \times (-1) = 1$
 $n = 1 \times n + 0$ \therefore get $(n, 0) = \frac{1}{2} =$

ex. If ged (16.55)
Find helper
$$x y$$
, st $1b\pi + 5by = ged$ (21.55)

$$-\frac{x}{1} + \frac{y}{1} + \frac{x}{1} + \frac{y}{1} + \frac{y}$$

-

* Converse of 1

$$\forall a.b.c. \in \mathbb{Z}$$
, if $gcd(a, c) = gcd(b, c) = 1 \Rightarrow gcd(ab, c) = 1$
 $proof. Let a.b.c. \in \mathbb{Z}$
 $assume gcd(a, c) = 1 \land gcd(b, c) = 1$
 $By BL = \exists st \in \mathbb{Z}. st. ast ct = 1 @$
 $\exists m.n \in \mathbb{Z}. st. bm t cn = 1 @$
 $0 \times \mathbb{Q}$
 $asLm + ascn + ctbunt ctcn = 1$
 $abxsm + clasn + tbm + tcn) = 1$
Since $sm, lasn + tbm + tcn) \in \mathbb{Z}$
 $l|sm, l|lasn + tbm + tcn) l \ge 0$
 $\therefore gcd(a, bc) = 1$ by $GcDCT$
 $- Copriments Characterization Theorem (CCT)^2$
 $\forall a.b \in \mathbb{Z}. gcd(a, b) = 1. \Leftrightarrow \exists s.t \in \mathbb{N}$ s.t. $astbt = 1$

- Division by GLOD (DB GLD)

$$\forall ab \in \mathbb{Z}$$
. $(a \neq a) \text{ or } b \neq a)$. ged $(\frac{1}{2}, \frac{1}{2}) = 1$, $d = \gcd(a,b)$
 $P_{inf}(i) = Let(a) \in \mathbb{Z}$, not both a .
 $Assume d = \gcd(a,b)$
 $\therefore a + b \text{ with both } a \rightarrow d \neq a$
 $\therefore d = \gcd(a,b) \rightarrow d|a|d|b$. $\frac{1}{2}, \frac{1}{2} \in \mathbb{Z}$.
 $\therefore d = \gcd(a,b) \rightarrow d|a|d|b$. $\frac{1}{2}, \frac{1}{2} \in \mathbb{Z}$.
 $\therefore d = \gcd(a,b) \rightarrow d|a|d|b$. $\frac{1}{2}, \frac{1}{2} \in \mathbb{Z}$.
 $\therefore d = \gcd(a,b) \rightarrow d|a|d|b$. $\frac{1}{2}, \frac{1}{2} \in \mathbb{Z}$.
 $\therefore d = \gcd(a,b) \rightarrow d|a|d|b$. $\frac{1}{2}, \frac{1}{2} \in \mathbb{Z}$.
 $\frac{1}{2}, \frac{1}{2} \in \mathbb{Z}$. By ce_{1} $\therefore \gcd(\frac{1}{2}, \frac{1}{2}) = 1$
e. Prove $\gcd(a,b) = 1 \Rightarrow \gcd(a,b) = \gcd(a,c) = ceN$.
 $\Rightarrow Due to BL , a + b + c = 1$
Let $\gcd(a,c) = d$ $an + ca = d$
 $(as + b + 2)(an + cn) = d$
 $a^{2}sm + as cn + ab + m + b + m = d$
 $a(as m + csm + b + m) + bc = tn) = d$
 $\Rightarrow \forall a \cdot s. m. c. n + b + e \in \mathbb{Z}$ $\therefore a + sm + csn + b + m \in \mathbb{Z}$
 $\forall d = \gcd(a, c) \quad \forall d|a| d|c$
 $\forall c = bc \quad \because By \exists D| d|bc$
 $\forall dz 0$
 $\therefore By G = b \notin d = \gcd(a, bc)$
 $So = \gcd(a, bc) = \gcd(a, bc)$

- Coprimeness and divisibility (CAD)

$$\forall a.b \in \mathbb{Z}$$
. $c|ab \land gcd(a,c) = 1 \Rightarrow c|b$
 $ex. 4|5x8 \quad gcd(4,s)=1 \Rightarrow 4|8.$
prof: Let $a.b.c \in \mathbb{Z}$.
Assume $c|ab \quad gcd(a,c)=1$
Since $gcd(a,c)=1$, by ccT . $\exists x,y \in \mathbb{Z}$, st $ax+cy=1$
Since $c|ab$, $\exists k \in \mathbb{Z}$ s.t $ab=ck$
 $abx+cby=b \in \mathbb{Z}$
 $i ab=ck : ckx+cby=b \quad cc(kx+by)=b$
Since $k.x,b,y \in \mathbb{Z}$. $kx+by \in \mathbb{Z}$. So $c|k$

.

.

p is prime
$$n \in \mathbb{N}$$
. $a_1, a_2 \cdots a_n \in \mathbb{Z}$.
 $p|a_1, a_2 \cdots a_n \Rightarrow p|a_i$ for some $i = 1, 2, ..., n$

- Unique Factorisation Theorem (UFT)
Every N (n>1) con be written as a product of prime firstons uniquely apost
from the order of factors. If I'm APE ASS. H = 3 th B - - If prime the initial
ex. Let p be a prime. Prove 13p+1 is perfect square iff p=11
(=>) 13p+1 perfect => p=11

$$x^2 = 13p+1$$
 (A = N)
 $13p = x^2 - 1 = (A+1)(x-1)$
Since 13 & p are prime, by UFT, the prime fodenization (k-D(k+1)) must be p
case 1. k-1=13 k+1=p
 $h=14$ p=15 (p isn't prime, .:DND)
(ase 2: k-1=p k+1=13
 $k=12$ p=1 V
case 3: k-1=1 k+1=15. (i*k-1 (<13p : we can't have k+1=13p k+1=1)
 $k=2$ p= $\frac{2}{13}$ (DND).
Therefore, if 13p+1 is perfect equare, then p=11
(=) Assume p=11
Then 13p+1 = 13×11+1 = 143+1=144. \Rightarrow a perfect square

- Divisors from prive followisedim (DFPF)
Let
$$n \in \mathbb{Z}$$
. $n = p^{n} p^{n} \cdots p^{n}$ (pipping $d \in \mathbb{N}$)
 $c \mid n \Leftrightarrow 0 \in p \in d \in \mathbb{Z} = p^{n} p^{n} \cdots p^{n}$
 ex . How may positive -typle of 12 are divisors of 8520 ?
 $12 = 2^{2}x^{5}y^{5}x^{5}^{n}$ $8520 = 2^{2}x^{5}x^{5}x^{7}^{2}$
By DFPF: The positive divisors of 8520 are cracily norths of from :
 $2^{p_{1}} 3^{p_{2}} 5^{p_{3}} 7^{q_{3}}$ $0 \leq p_{1} \leq 2$ $0 \leq p_{2} \leq 2$ $0 \leq p_{3} \leq 2$ $0 \leq p_{3} \leq 2$
 T^{3} be multiple of 12. We further require $p_{1} \neq 12$ and $p_{2} \geq 1$
Therefore $2 \leq p_{1} \leq 2$ $p_{1} = 2$
 $1 \leq p_{1} \leq 2$ $p_{2} = 1$ or 2.
 $0 \leq p_{3} \leq 1$ $p_{2} = 0$ or 1
 $0 \leq p_{2} \leq 2$ $p_{3} = 0$ or 1
 $0 \leq p_{3} \leq 2$ $p_{3} = 0$ or 1
 $0 \leq p_{3} \leq 2$ $p_{3} = 0$ p_{3} $p_{3} = n$ p_{3}^{m} $(p : p^{m})$
 $\therefore b^{3} = p^{(1)} p^{(2)} \cdots p^{(n)} = a = p^{(2)} p^{(n)} \cdots p^{(n)} (p : p^{mn})$
 $\therefore b^{3} = p^{(1)} p^{(2)} \cdots p^{(n)} = a = p^{(2)} p^{(n)} \cdots p^{(n)} (p : p^{mn})$
 $\therefore b^{3} = p^{(2)} p^{(2)} = b$
 $= p_{1} \approx p^{(2)} p^{(2)} = a = p^{(2)} p^{(2)} = a = p^{(2)} p^{(2)} p^{(2)} = p^{(2)} p^{(2)} = a = p^{(2)} p^{(2)} p^{(2)} = p^{(2)} p^{(2)} p^{(2)} = a = p^{(2)} p^{(2)} p^{(2)} = p^{(2)} p^{(2)} p^{(2)} = a = p^{(2)} p^{(2)} p^{(2)} = p^{(2)} p^{(2)} p^{(2)} = a = p^{(2)} p^{(2)} p^{(2)} = p^{(2)} p^{(2)} p^{(2)} = a = p^{(2)} p^{(2)} p^{(2)} p^{(2)} = p^{(2)} p^{(2)} p^{(2)} p^{(2)} = p^{(2)} p^{$

- GLCP from finite factorization (GLCP Pf)

$$C = p_{i}^{\alpha} p_{i}^{\alpha \nu} \cdots p_{\mu}^{\alpha \mu} \qquad b = p_{i}^{\mu} p_{i}^{\mu} \cdots p_{\mu}^{\mu\mu}$$

 $gcd(a,b) = p_{i}^{\vartheta_{i}} p_{i}^{\vartheta_{i}} \cdots p_{\mu}^{\vartheta_{\mu}} \qquad \vartheta_{i} = \min\{a_{i}, p_{i}\} (i = 1, 2, ..., k)$
 e_{k} use GCPPF to calculate $gcd(13230, 12936)$
 $gcd(13230, 1976)$
 $= gcd(12x3^{2}x5x7^{2}, 2^{3}x3x7^{2}x11)$
 $= 2min\{1,3\} \times 3^{min\{1,3\}} \times 5^{min\{1,0\}} \times 7^{min\{\nu,\nu\}} \times 11^{min\{\nu,1\}}$
 $= 2^{1}x5^{1}x5^{0}x7^{0}x11$
 $= 5x49^{1}$

7.1 Linear Diophantine Equations (LDES) - def. both coefficient & variables are integers sol? Why? sol? Why? 143x+253y=11 have lx. D Poes a @ Does 143x+253y=155 have a sol? Why? 3 Poes 143x+253y=154 have a > Find x. y & Z. s.t. 143x + 253y = d d= gcd (143, 253) × × °/ 1 0 253 0 4× 253-7×143=1 0 1 143 0 | -| 10 |-| 2 35 |4 -7 11 3 -13 23 0 3 > D Yes. we found X=-7 y=4 (> No ~ 11= gcd (143, 236) ~ 11 143 11 233 Proof by contradiction: Assume Exoyo EZ. s.t 143x0+153y0=115 ~ 11/143 11 23, By DZC 11/143X0+7534, . 11 135. But 11/145. contradicts. So 1437+253y=153 have no integer colution 3 Yez. 1 143. 154=14×11 143×1-7)+155×4 =11 $14 \times [143 \times (-7) + 155 \times 4] = 11 \times 14$ $143\times(-7\times14) + 253(4\times14) = 154$ 143×698) +253×56 =154

(=) Assume
$$d|c$$

Then (= bd ($b\in\mathbb{Z}$)
Sina $d = gcd(a, b)$, By BL, $\exists s.t \in\mathbb{Z}$. $s.t$ $astbt=d$
 $b(astbt)=bd$
 $a(bs)+b(bt)=c$
 $\therefore x=bs$. $y=bt$ is a sol to $axtby=c$.

7.2 Finding all solutions in 2 variables
- LDET 2
Lot a.b.
$$c \in \mathbb{Z}$$
. $a \neq 0$ bto. $d = \gcd(a, b)$
if $x = x_0 \land y = y_0$ is one particular integer sol in LDE $axtLy = c$
then set of all sol is $f(x, y) : x = x_0 + \frac{b}{d} \land$, $y = y_0 - \frac{a}{d} \land$, $n \in \mathbb{Z}$ }
ex. determine all col to $\frac{143}{13}x + \frac{253}{23}y = 154$, $\frac{2}{11}x_{14}$, $\frac{2}{10}$, $\frac{1}{2}x_{1} = -\frac{9}{10}$. $y = 5b$
from $LPETTermine the complete sol is $y = \frac{1}{11}x_{14}$, $\frac{1}{2}x_0 = -\frac{9}{10}$. $\frac{1}{2}x_0 + \frac{1}{2}x_0}{\frac{1}{2}x_0 + \frac{1}{2}x_0} = \frac{1}{10}$
 $x = -\frac{98}{11} + \frac{253}{11} \land$, $n \in \mathbb{Z}$
 $\frac{1}{2}x_0 + \frac{1}{2}x_0}{\frac{1}{2}x_0} = \frac{1}{10}$
 $\frac{1}{2}x_0 + \frac{1}{2}x_0}{\frac{1}{2}x_0}$
 $\frac{1}{2}x_0 + \frac{1}{2}x_0}{\frac{1}{2}x_0}{\frac{1}{2}x_0}$
 $\frac{1}{2}x_0 + \frac{1}{2}x_0}{\frac{1}{2}x_0}$$

$$\chi = \chi_0 + \begin{pmatrix} b \\ d \end{pmatrix} n \qquad / - \gamma_0 - \frac{4}{d} n$$

Find.
- Lot a.b.c. be arbitrary integers.
$$a\neq 0$$
 bits. $d^{\perp}g(d \lfloor a,b]$
 $P(fine A = \{(x,y) : x = x_0 + \frac{1}{2}n, y = y_0 - \frac{a}{4}n, n \in \mathbb{Z}\}$
 $B = \{(x,y) : x, y \in \mathbb{Z}, ax + by = c\}$
 $\mathbb{R} \Rightarrow A = B$. $P|\mathbb{R}$ is $A \leq B$. $B \leq A$
- Prove $A \leq B$. $E \Rightarrow (\pi, y) \in A$ \mathbb{R} is $(x, y) \in B$
 $\forall \lfloor x, y \rfloor \in A$ $\therefore x = x_0 + \frac{1}{4}n$ and $y = y_0 - \frac{a}{4}n$. $n \in \mathbb{Z}$
 $ax + by = a(x_0 + \frac{1}{4}n) + b(y_0 - \frac{a}{4}n)$
 $= ax_0 + \frac{a}{4}n + by_0 - \frac{ab}{6}n = ax_0 + by_0 = c$
 $\forall \lfloor x, y \rfloor \in B$ $A \leq B$
- Prove $B \leq A$. $E \Rightarrow \lfloor x_0 \mid x_0 \rfloor \in B$ \mathbb{R} is $(x, y) \in A$
 $\forall \lfloor x, y \rfloor \in B$ $\therefore ax + by = c$ $(x, y \in \mathbb{Z})$
 (x_0, y_0) is a sole to $ax + by = c$ $(x, y \in \mathbb{Z})$
 (x_0, y_0) is a sole to LDE . $ax_0 + by_0 = c \Rightarrow ax + by = ax_0 + by_0$. (X)
 $a(x - x_0) = b(y_0 - y)$
 $\forall a \neq 0 = b \neq 0$. $d \neq 0$. $d \forall u d h y d \neq 0$ $\therefore \frac{a}{d} \lfloor x - x_0 \rfloor = \frac{b}{d} \lfloor y, -y \rfloor$
 $\forall g \leq b(x - x_0) \in \mathbb{Z}$ $\therefore \frac{a}{d} \lfloor \frac{b}{d} (y, -y)$
 $\forall g \leq d(\frac{a}{d}, \frac{b}{d}) = 1$ by $D \in C$. $\therefore \frac{a}{d} \lfloor y = y_0$. $by (AD)$
 $\frac{a}{d}n = y_0 - y$ $y = y_0 - \frac{a}{d}n$
 $A(x - x_0) = \frac{b}{d}n$
 $x - x_0 = \frac{b}{d}n$ $(\forall a \neq 0)$
 $x = x_0 + \frac{b}{d}n$

$$\Rightarrow a = b \pmod{m} \iff m \pmod{(a-b)}$$
$$\Leftrightarrow a - b = km \qquad k \in \mathbb{Z}$$
$$\Leftrightarrow a = b + km \qquad k \in \mathbb{Z}.$$

Proof
$$\Im$$
:
Let a.b. $c \in \mathbb{Z}$
Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$
 $\therefore m|a-b m|b-c$
By DIC, $m|a-b+(b-c)$ $\therefore m|a-c$
 $\therefore m|a-c$ $a \equiv c \pmod{m}$

- Proposition 2.

$$\forall a, arb, br \in \mathbb{Z}$$
, if $a_1 \equiv b_1 \pmod{m}$ $a_2 \equiv b_2 \pmod{m}$
Then $\emptyset = a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$
 $\textcircled{a} = a_1 - a_2 \equiv b_1 - b_2 \pmod{m}$
 $\textcircled{b} = a_1 a_2 \equiv b_1 b_2 \pmod{m}$

Proof 3:
Let
$$a_1 a_2 b_1 b_2 \in \mathbb{Z}$$
.
Assume $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$
Then $m | a_1 - b_1$ $m | a_2 - b_2$
By DIC, $m | (a_1 - b_1) a_2 + (a_2 - b_2) b_1$
So $m | a_1 a_2 - b_1 b_2$

- Congruence Add and Multiply (CAM)

$$\forall n \in \mathbb{Z}^+$$
, $a_1, \dots, a_n \cdot b_1, \dots, b_n \in \mathbb{Z}$
If $a_i \equiv b_i \pmod{m}$ $1 \leq i \leq n$
Then $\emptyset = a_i + a_2 + \dots + a_n \equiv b_i + b_2 + \dots + b_n \pmod{m}$
 $\widehat{D} = a_i a_2 \dots a_n \equiv b_i b_2 \dots b_n \pmod{m}$

- Congruence power CCP)

$$\forall n \in \mathbb{Z}^+$$
, $a \cdot b \in \mathbb{Z}$.
 $a = b \pmod{m} \Rightarrow a^h = b^n \pmod{m}$

- Conginence Divide (CD)

$$\forall a.b. c \in \mathbb{Z}, \qquad \overline{z}\overline{k},$$

 $ac \equiv bc \pmod{m} \land gcd (c, m) = 1 \Rightarrow a \equiv b \pmod{m}$
 $ep.$
 $7 \equiv 3 \pmod{8} \qquad 8 | 27 - 3 = 3 \times (9 - 1)$
Since $gcd (8, 3) = 1, by (AD 8 | 9 - 1) \qquad So 9 \equiv 1 \pmod{8}$
 $27 \equiv 3 \pmod{12} \qquad 12 | 27 - 3 = 3 (9 - 1)$
 $12 + 9 - 1 \qquad So 9 \not\equiv 1 \pmod{12}$

Prof. Let abc
$$\in \mathbb{Z}$$

Assume $ac \equiv bc \pmod{m}$ and $gcd(c,m) = 1$
i $ac \equiv bc \pmod{m}$ i.m $|ac-bc| = c(a-b)$
i $gcd(c,m) = 1$ by $cAP = m|a-b$
So $a \equiv b \pmod{m}$

ex. is
$$5^{9} + 62^{1000} - 14$$
 divisible by 7.
 $7|(5^{9} + 62^{1000} - 14) = 0 \pmod{7}$
 $-14 \equiv 0 \pmod{7} \qquad (Since 7| -14 - 0)$
 $62 \equiv (-1) \pmod{7} \qquad (Since 7| 62 - (-1))$
By CP. $62^{1000} \equiv (-1)^{1000} \pmod{7}$
 $\equiv 1 \pmod{7}$
 $5 \equiv (-2)(\mod{7})$
 $S_{0} \qquad 5^{3} \equiv (-2)^{3} \pmod{7} \qquad by CP$
 $\equiv 8 \pmod{7} \qquad (Since 7| -8 - (-1))$
 $S_{0} \qquad 5^{9} \equiv (5^{3})^{3} \equiv (-1)^{5} \mod{7} \qquad by CP$
 $\equiv -1 \mod{7} \qquad (Since 7| -8 - (-1))$
 $S_{0} \qquad 5^{9} \equiv (5^{3})^{3} \equiv (-1)^{5} \mod{7} \qquad by CP$
 $\equiv -1 \mod{7} \qquad (Since 7) \qquad by CP$
 $\equiv -1 \mod{7} \qquad by CP$
By CAM $5^{9} + 62^{2000} - 14 \equiv (-1) + 1 + 0 \qquad by 7$

Prof. Lot
$$ab \in \mathbb{Z}$$

By DA, $a=q_1m+r_1$, $b=q_2m+r_2$
for unique $q_1, r_1, q_2, r \in \mathbb{Z}$ $o \in r_1 < m$ and $o \leq r_2 < m$
">" Assume $a=b \mod m$] = $G r_1 = r_2$
 $ra=b \pmod m$ $a=b$
 $ra=b = m (q_1, q_2) + r_1 - r_2$ $rm [Im(q_1 - q_2) + r_1 - r_3]$
Also, $m[m (q_1 - q_2)$
By DU, $m[Im(q_1 - q_2) + r_1 - r_2] - m (q_1 - q_2)$
So $m[r_1 - r_3]$
So $m[r_1 - r_3]$
So $r_1 + r_2 = km$ for some $k \in \mathbb{Z}$
 $ro \in r_1 < m$ and $o \in r_2 < m$
 $rh = r_1 < r_2 < m$.
So $-m < km < m$ Sina $r_1 - r_2 = km$
 $fight m>0 = -r_2 > -m$
 $rh \in \mathbb{Z}$ $k=0$
 $r_1 - r_2 = r_2$

and
$$a-b=q_1m+r_1-q_2m-r_1=m(q_1-q_2)$$

Since $q_1.q_2\in\mathbb{Z}$, $q_1-q_2\in\mathbb{Z}$ So $m(a-b)$
Therefore, $a=b(mpd)m$

- Congruent To Remainder
$$(CTR)$$

 $\forall ab \in \mathbb{Z}$, $o \in b < m$,
 $a = b \pmod{m} \iff a \neq m \cdots b$

ex What remainder of
$$[77^{100} (999) - 6^{8/3}] = 4$$

So $77^{100} \equiv 1^{100} (mod 4)$ by CP
 $\equiv 1 \pmod{4}$ by CP
 $999 \equiv (-1) \pmod{4}$
 $6 \equiv 2 \pmod{4}$ by CP
 $\equiv 2 \pmod{4}$ by CP
 $\equiv 4 \pmod{4}$ by CP
 $\leq 0 \cos^{8/3} \equiv b (b^{2})^{4/3} \equiv b(0)^{4/3} \equiv 6 \cdot 0 \equiv 0 \pmod{4}$
By CAM, $77^{100} \times 999 - 6^{8/3} \equiv 1 \times (-1) - 0 \pmod{4}$
 $\equiv 3 \mod{4}$
Since $0 \leq 3 \leq 4$ by CTP, remainder is 3.

- Divisibility by 3
31a
$$\Rightarrow$$
 31 sum of digits
Proof: Let a be non-negative integer
 \Rightarrow Let $d|_{x}. d|_{x-1}...d|_{x-1}. d_{0}$ be decimed representation of a.
 $d_{v} \in \{0, 1, 2, 3, 4, 5, 0, 7, 8, 9\}$ $\forall i = 0, ..., f$ $(\# = 0)$
Then $a = d|_{x-1} 0^{k} + d|_{x-1} 0^{k-1} + ... + d_{0} \cdot 10^{0}$
 $\Rightarrow i' |0 = 1 \pmod{3}$
 $\therefore h_{y} cp = 10^{v} = 1^{v} = 1 \pmod{3}$ $\forall i \in \mathbb{N}$

→ By CAM and CP,
$$a \equiv d_{k} lo^{k} + d_{k+1} lo^{k-1} + \cdots + d_{1} lo^{1} + d_{0} \pmod{5}$$

 $\equiv d_{k} + d_{k+1} + \cdots + d_{2} + d_{1} + d_{0} \pmod{3}$
→ By CTP, $z \mid a \iff a \equiv 0 \pmod{5}$
 $\Rightarrow \because a \equiv d_{k} + d_{k-1} + \cdots + d_{2} + d_{1} + d_{0} \pmod{5}$
 $\therefore a \equiv 0 \pmod{5} \quad \text{iff} \quad d_{k} + d_{k-1} + \cdots + d_{0} \equiv 0 \pmod{5}$
 $z \mid a \iff 3 \mid d_{k} + d_{k-1} + \cdots + d_{0}$

- linear congruence

$$a_X \equiv c \pmod{m}$$
 is (-c in X.
solution to the 1-c is Xo. s.t $a_{X_0} \equiv c \pmod{m}$

- linear congruence theorem (LCT)

$$\forall a \in \mathbb{N}$$
, $a \neq 0$,
 $a \chi \equiv C \mod m$) has a sol \Leftrightarrow $d \mid c \mid d \equiv \gcd(a, m)$
 $\forall f \chi = \chi_0$ is a sol of congruence, then $\{\chi \in \mathbb{Z} : \chi \equiv \chi_0 \pmod{\frac{m}{2}}\}$
 $\{\chi \in \mathbb{Z} : \chi \equiv \chi_0, \chi_0 + \frac{m}{4}, \chi_0 + 2\frac{m}{4}, \dots, \chi_0 + (d-1)\frac{m}{4} \pmod{m}\}$

ex. Find all sol of
$$4x-2=b \pmod{10}$$

by $(AM \quad requivalent to \quad 4x=8 \pmod{10}$ by $(AM \quad \neg x \pmod{10}) \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad b \quad 7 \quad 8 \quad 9 \quad 4x \pmod{10}$

 $\rightarrow x \pmod{10} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad b \quad 7 \quad 8 \quad 9 \quad 4x \pmod{10}$

 $\rightarrow x \pmod{10} \quad 0 \quad 4 \quad 8 \quad 2 \quad b \quad 0 \quad 4 \quad 8 \quad 2 \quad 6 \quad 4x = 7 \pmod{10}$

 $\rightarrow x = 7 \pmod{10}$

$$a \chi = c \pmod{m} \quad \text{where } \chi \in \mathbb{Z}$$

$$\Rightarrow c = a \chi \pmod{m}$$

$$\Rightarrow m | (c - a \chi) \\\Rightarrow c - a \chi = lem \quad k \in \mathbb{Z}$$

$$\Rightarrow a \chi + m k = c \quad \chi \cdot k \in \mathbb{Z}$$

$$a \chi + m k = c \quad has a sol \quad iff gcd (a, m) | c$$

ex. Find all sol of
$$12x = 102 \pmod{2010}$$

be equivalent to solving LPE $12x + 200y = 102$
 $\Rightarrow gcd(12, 2010) = 6$ by EEA
 $\Rightarrow (6|_{102} \therefore LPE has solved and god(a, m) = ...
 $x = -283$ $y = 17$
 $\Rightarrow (x, y) : x = -283 + \frac{200}{6} n , y = 17 - \frac{12}{6} n , n \in \mathbb{Z}$ by $LDET2$
 $\therefore x = -283 + \frac{2010}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{2010}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{2010}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{2010}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{2010}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = -283 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\oplus LDET2$
 $\Rightarrow x = 176 + \frac{176}{6} n = -283 + 235 n , n \in \mathbb{Z}$ $\pi = 176 + \frac{176}{100} + 2010$
 $= 4 - x = 1816 + \frac{176}{100} + 2010$
 $= 4 - x = 184 + -118 + -118 + -138 +$$

ex. Find all sol to
$$10 = 3 \pmod{14}$$

equivalent to solving LDE $10 \times 14 = 3$
 $\Rightarrow \gcd(10, 14) = 2$ by EEA.
 $2 \neq 3$. have no sol

ex. Find all sol to
$$15x \equiv 6 \pmod{18}$$

 \Rightarrow Since ged $(15, 18) = 3 \quad 3|b$
By LCT , the LDE has sols. $L = 3 \text{ sols mod } 18$)
 $\Rightarrow x = 4 \quad is a \text{ sol}$.
By LCT , the complete sol is $\{x \in \mathbb{Z} : x = 4 \mod \frac{18}{5}\}$
 $\Rightarrow \{x \in \mathbb{Z} : x = 4 \mod 6\}$
 $\Rightarrow \{x \in \mathbb{Z} : x = 4 \mod 6\}$

The Int modulo m to be set of m cc.

$$Z_m = \{ [0], [1], [2], [3], ..., [m-1] \}$$

- modular arithmetic

op. Z4

[a]+[b]=[a+b]

[a][b] = [ab]

 $[1]^{-1} = [1]$ $[2]^{-1}$ DNE $[3]^{-1} = [3]$

+	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

\times	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

• For any IAJ in Zm IAJ+[0]: [A+[0]: [A+2]=IAJ
[0] is the additive identity in Zm.
• for any IAJ in Zm IAJIJ=[A]: [A+1-0]]=[A]
IJ] is the multiplicative identity in Zm
• for any IAJ eage Zm IAJ+[-A] = [A+1-0]] = [D]
I-AJ is the additive inverse of IAJ multiplicative identity
• for any IAJ eage Zm IAJIJ] = [Lb]IAJ = IJ]
IbJ is the undriplicative inverse of IAJ. \$1] IAJ¹ = [Lb]
\$AAAAAA : eq Zy I-1)¹ = [L]
IDJ¹ & L2J¹ don't have sufficient inverse
ex. Colorist and multiplicative inverse of IAJ.
add of IDJ is I-DJ=IZJ
wult of IDJ is IDJ[A] = [L]
Ima exactly when
$$6x = 1 \pmod{9}$$
.
: ged (b-1)=3 st i by LC] is work builty [Dx]=[I]
The exactly when $7x = 1 \pmod{9}$
wult of ITJ is ITJIA] = [L] or an inducty ITX]=[L]
The exactly when $7x = 1 \pmod{9}$
is ged (7.7)=1 1]1 by LC] is have Isl mod 7
By inspection, $x = k$ is a sd. By LCJ, the complete sol is $x = 4 \pmod{7}$

)

- Modular Arithmetic Theorem (MAT2) $\forall a. c \in \mathbb{Z}$. $a \neq 0$. $[a] [x] = [c] \text{ in } \mathbb{Z}m \text{ has a sole iff } d[c. d=gcd(a,m))$ When d[c], there are d sole. $[x_0]$, $[x_0 + \frac{m}{d}]$, $[x_0 + 2\frac{m}{d}]$, ..., $[x_0 + (d-1)\frac{m}{d}]$ where $[x] = [x_0]$ is 1 sole. $e_{x.}$ Solve [zs][x] = [12] in \mathbb{Z}_2 $2sx \equiv 12 \mod 9$ $\Rightarrow [zs][x] + [4] = [12]$ [T][x] = [12] - [4] = [8] ft[9]

→ By MAT. since gcd (7.9)=1 and 1/8. there is 1 col 支合有解
→ 9 [7x - 8. 9n=7x-8 7x-9n=8 (1用 EEA 解)
By inspection [5] is a so]. since [7][5]=[35]=[8]
so the sol is
$$[x] = [5]$$

ex. Solve [24][x] + [3] = [7] in Zq $\iff [6][x] = [4]$ $\therefore gcd (6, 9) = 3$ and 2/4-1 no sol.

8. 7 Fermat's Little Theorem
- Fermat's Little Theorem
$$(FlT)$$

 $\forall p \in prime \land p \nmid a. a^{p-1} \equiv 1 \mod p$
 $ep. b' \equiv 1 \mod 7 \quad i \quad 7 \restriction b \quad b^2 \equiv 3b \equiv 1 \pmod{7}$
 $p = 7. a = b$
 $Z_{7.} \qquad [I \mid] \qquad [Z \mid] \qquad [A \mid] \qquad [A \mid] \qquad [b \mid] \qquad [A \mid] \ [$

et determine the remainder when 7^{12} is divided by 11. i II is prime $\wedge 11/7$. FlT applies $7^{12} \equiv 1 \pmod{12}$ $(7^{12} \equiv 7^2(7^{12})^2 \equiv 49(13)^2 \pmod{11}$ $\equiv 5 \mod{11}$ i $0 \leq 5 < 11$. By CTR. remainder is 5 $\times 1. \ln \mathbb{Z}_{P}$, FlT tells us that $[a] \neq [0]$

$$Ea^{p-1}] = Ei], Ea]^{p-1} = Ei]$$

$$Ea^{p-1}] = Ei], Ea]^{p-1} = Ei]$$

$$Ea^{p-1}] = Ei], Ea]^{p-1} = Ei]$$

$$Ea^{p-1}] = Ea]^{p-1} = Ea]^{p-1}.$$

$$Ea^{p-1}] = Ea^{p-2}]$$

$$e_{p} = \mathbb{Z}_{103}, E_{22}]^{-1} = E_{22}^{10}[2]^{1}$$

- Corollary 1/2 it

$$\forall p \in pnime . a \in \mathbb{Z}$$
. $a^{p} \equiv a \pmod{p}$
 $proof.$
 $case_{1} : p|a$
 $a \equiv 0 \pmod{p}$ $a^{p} \equiv 0^{p} \equiv 0 \pmod{p}$ $\therefore a^{p} \equiv a \pmod{p}$
 $case_{2} : p \neq a$
 $By F \notin T$ $a^{p-1} \equiv 1 \pmod{p}$ Forexa $\Rightarrow a^{p} \equiv a \pmod{p}$
 e_{p} . $p \neq a : 6^{b} \equiv 1 \pmod{2}$ by $F \notin T$.
 $\Rightarrow b \cdot 6^{b} \equiv b \cdot 1 \pmod{2}$
 $p|a : 14^{7} \equiv 14 \pmod{7}$

ex. determine the remainder when
$$8^{97}$$
 is divided by 11.
:: 11 is prime. 11 f 8
:. Due to FelT, $8^{10} \equiv 1 \pmod{11}$
 $9 \equiv (-1) \pmod{10}$ 7
:. $9^{7} = 9 \pmod{10}$ 7
:. $9^{7} = 9 \pmod{10}$ 7
 $8^{97} \equiv 8^{9+10}k$ keZ.
 $8^{97} \equiv 8^{9+10}k \equiv 8^{9} \cdot (8^{10})^{k} \equiv 8^{9} \cdot (1)^{k} \pmod{11}$ by FelT
:: $0 \leq 7 < 11$ by CTR , the remainder is 7

For proof.
is ged (m₁, m₂) = 1.
is sols of n=a, Lmod m₁) is
$$\{a_1 + m_1X : X \in \mathbb{Z}\}$$
Aft n = a₂ (mod m₂) ⇔ m₁X = a₂ - a₁ (mod m₂)
is LCT & def of congruence and divisibility
is sols of m₁X = a₂ - a₁ (mod m₂) is $\{m_2Y + X_0 : Y \in \mathbb{Z}\}$
is X = m₂Y + X₀
is $\{m_1(m_2Y + X_0) + a_1 : Y \in \mathbb{Z}\} = \{m_1m_2Y + (m_1X_0 + a_1) : Y \in \mathbb{Z}\}$
congruence class [no] in $\mathbb{Z}_{m_1m_2}$.
no=m₁X₀+a₁ is a sol

$$\begin{aligned} & x = 5 \pmod{b}, \\ & x \equiv 5 \pmod{b}, \\ & x \equiv 2 \pmod{1}, \\ & x \equiv 3 \pmod{7}, \\ & x \equiv 5 (1), \\ & x \equiv 5 (1$$

*
$$\#_{4}^{x} = 5 \pmod{6}$$

 $\chi = 58 \pmod{77}$
 $\chi = 58 (\mod{77})$
 $\chi = 58 (\cancel{77})$
 χ

→
$$k=5$$
 is a sol.
By LCT, complete sol is $k=5 \pmod{b}$
i. $k=5t65$ (SEZ)
 $x=58+77k = 58+77 \times (5+65) = 443 + 4625$
i. complete sol is $x=443 \pmod{462}$
 $4\times7\times11$

- Generalized Chinese Remainder Hearren (GCRT)
k. m. m. m.
$$K \in \mathbb{Z}^{d}$$
 a. $a_{k} \cdots a_{k} \in \mathbb{Z}$
if ged init, mj)=1 $\forall i \neq j$
Then $\{n: n \equiv a_{1} \pmod{m_{1}} \dots n \equiv a_{k} \pmod{m_{k}}\}$
 $= \{n: n \geq n \geq (m \mid d \mid n) \dots n \equiv a_{k} (m \mid d \mid m_{k})\}$
 $= \{n: n \geq n \geq (m \mid d \mid n) \dots m_{k}\}$
ex. solve $M \equiv 2 \pmod{m_{1}} \dots m_{k}$
 $p_{X} \equiv 6 \pmod{m_{1}} \dots m_{k}\}$
ex. solve $M \equiv 2 \pmod{m_{1}} \dots m_{k}$
 $p_{X} \equiv 6 \pmod{m_{1}} \dots m_{k}$
 $p_{X} \equiv 6 \pmod{m_{1}} \dots m_{k}\}$
 $p_{X} \equiv 6 \pmod{m_{1}} p_{X} \equiv 4 \pmod{m_{1}} p_{X} \dots m_{k}\}$
 $p_{X} \equiv 4 \pmod{m_{1}} p_{X} \equiv 4 \pmod{m_{1}} p_{X} \dots m_{k}\}$
 $p_{X} \equiv 2 \pmod{m_{1}} p_{X} \equiv 4 \pmod{m_{1}} p_{X} \dots m_{k}$
 $p_{X} \equiv 4 \pmod{m_{1}} p_{X} \equiv 4 \pmod{m_{1}} p_{X} \dots m_{k}$
 $p_{X} \equiv 4 \pmod{m_{1}} p_{X} \equiv 4 \pmod{m_{1}} p_{X} \dots m_{k}$
 $p_{X} \equiv 4 \pmod{m_{1}} p_{X} \equiv 4 \pmod{m_{1}} p_{X} \dots m_{k}$
 $p_{X} \equiv 4 \pmod{m_{1}} p_{X} \equiv 4 \pmod{m_{1}} p_{X} \dots m_{k}$
 $p_{X} \equiv 4 \pmod{m_{1}} p_{X} \dots p_{k}$
 $p_{X} = 4 p_{X} p_{X}$

8.9 Splitting a Modulus
- Splitting Modulus Theorem (SMT)

$$\forall a \in \mathbb{Z}$$
. $m_1 \dots m_r \in \mathbb{Z}^+$
 $gcd(m_1, m_r)=1 \Rightarrow gn \equiv a (mod m_r) \equiv n \equiv a (mod m_rm_r)$
 $proof.$ Assume $gcd(m_1, m_r)=1$.
 \therefore Price to (PT, $n \equiv n \pmod{m, m_r}$) No is a porticular solution
Let $n_r \equiv a$.
 $\therefore a \equiv a \pmod{m_r}$ $a \equiv a \pmod{m_r}$
 $\therefore n \equiv a \pmod{m_r}$
 $\therefore n \equiv a \pmod{m_r}$
 $ex.$ defermine remainder then 8^{9^2} divided by tt
 $10^3 \neq 8^{9^2} \equiv \pi \pmod{55}$ by (RT
By SMT, $\therefore gcd(55, 11) \equiv 1$
 $\therefore \pi \equiv 3 \pmod{55}$ by (RT
 $y = 3 \binom{mod}{55} \frac{8^{9^2}}{5^2} \equiv \pi \pmod{55}$)
 $x \equiv 2 \pmod{1}$

 $\chi = 7 \pmod{1}$ $\chi = 3 \pmod{5}$ By inspection $\chi = 18 \pmod{55}$ $\therefore 8^{9^7}$ has remainder 18.

(a) Setting up RSA

FJT

- (b) RSA Encryption
- (c) RSA Decryption

The three stages are described below.

(a) Setting up RSA: To set up the RSA encryption scheme, Bob does the following.

- 1. Randomly choose two large, distinct primes p and q and let n = pq.
- 2. Select an arbitrary integer e so that gcd(e, (p-1)(q-1)) = 1 and 1 < e < (p-1)(q-1).
- 3. Solve the congruence

 $ed \equiv 1 \pmod{(p-1)(q-1)}$

for an integer d where 1 < d < (p-1)(q-1).

- Publish the public key (e, n).
- 5. Keep secret the private key (d, n), and the primes p and q.

(b) RSA Encryption: To encrypt a message as ciphertext and send securely to Bob, Alice does the following.

- 1. Obtain an authentic copy of Bob's public key (e, n).
- 2. Construct the plaintext message M, an integer such that $0 \le M < n$.
- 3. Encrypt M as the ciphertext C, given by

 $C \equiv M^e \pmod{n}$ where $0 \le C < n$.

4. Send C to Bob.

(c) RSA Decryption: To decrypt the ciphertext received from Alice, Bob does the following.

1. Use the private key (d, n) to decrypt the ciphertext C as the received message R, given by $R \equiv C^d \pmod{n}$ where $0 \le R < n$.

2. Claim: The received message R equals the original plaintext message M, i.e., R = M.

9.3 Proving RSA Scheme Works
-RSA

$$\forall p.q.n.e.d. M. C. \& R.$$

 $\forall f \cdot p \& q$ are distinct primes
 $r \cdot n = pq$
 $\exists \cdot e \& d are possibline integers s.t. ed = ((mod (p-1)(q-1)))$
and $1 \le e$, $d \le (p-1)(q-1)$
 $4 \quad 0 \le M \le n.$
 $5 \quad M^e = C \pmod{n} \quad 0 \le C \le n$
 $b \quad (d \ge R \pmod{n}) \quad 0 \le R \le n.$
Then $R = M$

proof.

$$R \stackrel{b}{=} Cd \stackrel{5}{=} (M^e)^d = M^{ed} \pmod{pq}$$

By SMT, equivalent to solve § $M^{ed} \pmod{p}$
 $(mod p)$

$$aff$$

 $O p|M$.
 $M \equiv 0 \pmod{p}$ $R \equiv 0^{ed} \equiv 0 \pmod{p}$

$$- def.$$

$$C = \{ x + yi : x \cdot y \in \mathbb{R} \}$$

$$\stackrel{\uparrow}{Pe} \qquad Tm$$

$$real part \qquad imaginary part$$

- Addition

Let z = a + bi w = c + di z + w = (a + c) + (b + d) iAdditive identity $z + o = (a + yi) + (o + 0i) = z \Rightarrow 0$ is additive identity Additive inverse $z + (-1)z \Rightarrow - z$ is additive inverse

- Multiplication
Lot
$$z = a+bi$$
 $w = c+di$ $zw = (ac-bd) + (ad+bc)i$
Multiplication 2 dentity $z \cdot 1 = (x+yi)(Hoi) = x+yi = z \rightarrow 1$ is $m-id$
Multiplication 2 nverse $z \cdot z^{-1} = 1$
 $z^{-1} = -\frac{1}{z} = -\frac{1}{a+bi} = -\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i = -\frac{a-bi}{a^2+b^2}$
 $ex \cdot (H2i)^{-1} = -\frac{1-2i}{1^2+2^2} = \frac{1}{5} - \frac{2}{5}i$

- Properties of complex arithmetic (PCA)

$$\bigcirc$$
 associativity of addition : $(u+v)+z = u+(v+z)$
 \bigcirc commutativity of addition : $u+v = v+u$
 \bigcirc additive identity : $0=0+0$ i $\rightarrow z+0=z$
 \oiint additive inverse : $z+(-z)=0$ $z=a+bi$ $-z=-a-bi$
 \oiint additive inverse : $z+(-z)=0$ $z=a+bi$ $-z=-a-bi$
 \oiint associativity of multiplication : $(uv)z = u(vz)$
 \oiint commutativity of multiplication : $uv = vu$
 \oiint multiplicative inverses : $1=1+0$ i $\rightarrow z\cdot 1=z$

(8) miltiplicative inverses: Z·Z⁺=1. (Z=a+bit/o) Z⁺= a-60 ③ distributivity: Z(U+V) = ZU+ZV. 満えいとりて茶样に、C (a kind of field) × Field 包含: F. Zp. Q ス-包含: Zm (m 花美 prime)

esc. If $bz^{3} + (H^{3}Jzi)z^{2} - (II - 2Jzi)z - b=0$ suppose $y \in P$ is a solution $by^{3} + (H^{3}Jzi)y^{2} - (II - 2Jzi)y - b=0$ $(by^{3} + y^{2} - I|y - b) + (3Jzy^{2} + 2Jzy)i = 0 + 0i$ $zby^{3} + y^{2} - I|y - b = 0$ $(3Jzy^{2} + 2Jzy = 0 \qquad y=0 \qquad y=-\frac{2}{3}$ $y=0 \qquad by^{3} + y^{2} - I|y - b = -\frac{5}{7}$ $y=-\frac{2}{3} \qquad by^{3} + y^{2} - I|y - b = 0 \qquad y$

10. 2 Conjugate and Modelus
- def. conjugate
$$\overline{z}$$

 $z = x + yi$ $\overline{z} = x - yi$
- Properties of conjugate (PCJ)
 $@ \overline{z} = z$ $@ \overline{zw} = \overline{z} \cdot \overline{w}$
 $@ \overline{z+w} = \overline{z} + \overline{w}$ $@ \overline{zw} = \overline{z} \cdot \overline{w}$
 $@ \overline{z+w} = \overline{z} + \overline{w}$ $@ \overline{z} + \overline{z} = zfe(\overline{z})$ $\overline{z} - \overline{z} = 2fm(\overline{z})^{1}$
 $@ \overline{z+\overline{z}} = 2fe(\overline{z})$ $\overline{z} - \overline{z} = 2fm(\overline{z})^{1}$
 $= def.$ modulus $|z|$
 $z = x + yi$ $|z| = \sqrt{x^{2} + y^{2}}$
 $= frometies of Modulus (PM)$
 $@ |z| = 0 \iff \overline{z} = \infty$ $@ |zw| = |z||w|$
 $@ |\overline{z}| = |\overline{z}|$ $@ \overline{z} \neq 0, \Rightarrow |\overline{z}^{-1}| = |\overline{z}|^{-1}$
 $@ \overline{z} = |z|^{2}$
 $prof @: \overline{z} = (a-bi)(a+bi) = a^{2}+b^{2} = |z|^{2}$
 $prof @: \overline{z} = (a-bi)(a+bi) = a^{2}+b^{2} = |z|^{2}$
 $prof @: |\overline{z} = |z|^{2}$
 $prof @: |\overline{z} = (a-bi)(a+bi) = a^{2}+b^{2} = |z|^{2}$
 $prof @: |\overline{z} = |z|^{2}$
 $prof @: |zw| = (\underline{z}, w)(\overline{z}, w)$ PM_{2}
 $= (\underline{z}, w)(\overline{z}, w)$ PM_{3}
 $\therefore |zw| = (\underline{z}, w)(\overline{z}, w)$ $p(z)$
 $\therefore we can take square profs:$
 $|zw| = |z||w|$ $|zw| = -|z||w|$ (x)
 $\therefore |zw| \neq 0$ $|z||w|_{20}$.
 $\therefore |zw| \neq 0$ $|z||w|_{20}$.
 $\therefore |zw| \neq 0$ $|z||w|_{20}$.

$$e_{X} \cdot [dz = 2.06 \text{ G} \cdot [powe |z+w|^{2} + |z-w|^{2} = 2|z|^{2} + 2|w|^{2}$$

$$Prof. Let = z.w \in \text{G}$$

$$|z+w|^{2} + |z-w|^{2}$$

$$= (z+w)(\overline{z+w}) + (z-w)(\overline{z-w}) \quad \text{by PM}$$

$$= (z+w)(\overline{z+w}) + (z-w)(\overline{z-w}) \quad \text{by PG}$$

$$= 2.\overline{z} + zw + \overline{z} + w + ww + z\overline{z} - zw - \overline{z} + w\overline{w}$$

$$= 2.2\overline{z} + 2w\overline{w}$$

$$= 2|z|^{2} + 2|w|^{2} \quad \text{by PM}$$

- Lorollang

$$\overline{z_1 + \overline{z_2} + \dots + \overline{z_n}} = \overline{z_1} + \overline{z_2} + \dots + \overline{z_n}$$

$$\overline{z_1 \cdot \overline{z_2} \dots \overline{z_n}} = \overline{z_1} \cdot \overline{z_2} \dots \overline{z_n}$$

$$|\overline{z_1} \cdot \overline{z_2} \dots \overline{z_n}| = |\overline{z_1}||\overline{z_2}| \dots |\overline{z_n}|$$

- Triangle Inequality (TZQ)

$$\forall z.w \in \mathbb{C}$$
 we have $|z+w| \leq |z| + |w|$

$$\begin{array}{l} p_{No} f: \\ Lot \quad z = x + yi \quad w = u + vi \\ -w = -u \cdot vi \quad z + w = z - (-w) = (x - (-u)) + (y - (-v))i \\ |z + w| = |z - (-w)| = \sqrt{(x - (-u))^2 + (y - (-v))^2} \\ let \quad A(0, 0) \quad B(z): (x, y) \quad ((-w): (-u, -v)) \\ let \quad A(0, 0) \quad B(z): (x, y) \quad ((-w): (-u, -v)) \\ let \quad A(z) \quad bc \leq l_{AB} + l_{Ac} \\ \vdots \quad by \quad P_{n} + hagorean \ Theorem. \quad l_{AB} = |z|, l_{Ac} = |-w| = |w|, \ l_{Bc} = |z - (-w)| = |z + w| \\ \vdots \quad |z + w| \leq |z| + |w| \end{array}$$

10.4 Pe Moirre's Theorem

- pe Moivre's Theorem (DMT)

$$\theta \in \mathbb{R}$$
. $n \in \mathbb{Z}$. $(\cos \theta + i\sin \theta)^{n} = \cos n\theta + i\sin n\theta$

ex. compute
$$(-\frac{1}{12} + \frac{1}{12}\dot{v})^{-1000}$$

write in polar firm. $Y = \sqrt{(-\frac{1}{12})^2 + (\frac{1}{12})^2} = 1$
 $\tan \theta = \frac{1}{\sqrt{2}} = -1$ $\therefore \theta = \frac{3\pi}{4}$
 $\therefore (-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\dot{v})^{-1000} = (\cos \frac{3\pi}{4} + \dot{v}\sin \frac{3\pi}{4})^{1000}$
 $= \cos(-1000 \cdot \frac{3\pi}{4}) + \dot{v}\sin(-1000 \cdot \frac{3\pi}{4})$ by DMT
 $= 1 + 0\dot{v}$
 $= ($

- Corollary to PMT.

$$\forall z \in \mathbb{C}, z = v (\cos \theta + i \sin \theta) \qquad Z^n = v^n (\cos n\theta + i \sin n\theta)$$

For $z \in \mathbb{C}. \quad z = v (\cos \theta + i \sin \theta)$

* when z=0 z DNE

10.5 Complex n-th Koots
- dif complex nth roots of a

$$u \in C$$
 $n \in \mathbb{N}^+$ $Z^h = a$
 Z is complex nth roots of a
ex Find complex 6th roots of $-6R$.
cartesian form $Z^h = -6R$
 $palar$ form. $-6R = 6R$
 $R = \frac{\pi}{6}, \frac{3\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{6}, \frac{3\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{6}, \frac{7\pi}{6}, \frac{7\pi}{$

ex. solve
$$z^{8} \ge 1$$
 for $z \in C$ (use CNPT)
By inspection $z \ge 1$ is a sol.
By CNPT, there are 8 solutions.
and solutions lies on circle with radius 1.
uniformly spaced out by angle $\frac{2\pi}{8} = \frac{\pi}{4}$

$$z_{n} = |x| (\cos \frac{\pi}{n} + i \sin \frac{\pi}{n}) = \frac{1}{12} + \frac{1}{12}$$

$$z_{1} = |x| (\cos \frac{\pi}{n} + i \sin \frac{\pi}{n}) = \frac{1}{12} + \frac{1}{12}$$

$$z_{2} = |x| (\cos \frac{\pi}{n} + i \sin \frac{\pi}{n}) = -\frac{1}{12} + \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = -\frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = -\frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = -\frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = -\frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = -\frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = -\frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = -\frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = -\frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = \frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n} = \frac{1}{12} - \frac{1}{12}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n}$$

$$z_{1} = \cos \frac{\pi}{n} + i \sin \frac{\pi}{n}$$

$$z_{2} = -27 = (\cos \theta + i \sin \theta)$$

$$z_{1} = r (\cos \theta - i \sin \theta)$$

$$z_{1} = r (\cos \theta - i \sin \theta)$$

$$z_{1} = r (\cos \theta - i \sin \theta)$$

$$z_{1} = r (\cos \theta - i \sin \theta)$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{2} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{2} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{2} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{2} = -27 = i s - \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{2} = -27 = \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{2} = -27 = \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{2} = -27 = \frac{\pi}{n} + \frac{1}{2n}$$

$$z_{1} = -27 = \frac{\pi}{n} +$$

10. 6 Square Poots and quadratic formula
- Quadrotic Formula (QF)

$$\forall a.b.c \in C. a\neq 0.$$
 sol of $az^2+bz+c=0$ are
 $z=\frac{-b\pm w}{2a}$
where w is a sol ϕ $w^2=b^2-4ac$
ess. solve $z^2-2z+1+\delta v=0$ $z\in C$
by quadratic formula. $z=\frac{-(-2)\pm w}{2\cdot 1}$ $w^2=(-2)^2+(-1)\cdot(1+\delta v)=-3v_1$
(et $w=a+bv$
 $a^2+2abi-b^2=-32v$
 $z=2-b^2=0$ $z=-4$
 $z=2-b^2=4$
 $z=2-b^2=4$
 $z=2-b^2=4$
 $z=2-b^2=4$
 $z=2-2v$ $z=-1+2v$

11.1 Introduction of polynomials - field F

- the rational numbers \mathbb{Q} ,
- the real numbers $\mathbb{R},$
- the complex numbers $\mathbb{C},$
- the integers modulo a prime \mathbb{Z}_p .

- Important property of field

$$\forall F \cdot \forall a \cdot b \in F$$
 $a \neq 0$ and $b \neq 0 \Rightarrow ab \neq 0$ (contrapositive)
 $\forall F \cdot \forall a \cdot b \in F$ $a \neq 0$ and $b \neq 0 \Rightarrow ab \neq 0$ (contrapositive)
- def.
polynomial in x over the field F :
 $a_{1} x^{n} + a_{n+} x^{n-1} + \dots + a_{1} x + a_{0}$ (n 30 . n $\in \mathbb{Z}$)
 $\chi \Rightarrow indeterminate$
 $a_{0} \cdot a_{1} \cdots a_{n} \Rightarrow element$
 $a_{i} \Rightarrow coefficient$
 $a_{i} \chi^{i} \Rightarrow term.$
 $|a_{i}gest| power of \chi \Rightarrow degree$
 $\Rightarrow \\ \begin{cases} complex polynomial / polynomial over C & # C in \\ real polynomial & # & & \\ retirend polynomial & # & & \\ retirend polynomial & # & & \\ zero \sim \\ constant \sim \begin{cases} linear \sim \\ rubic \sim \\ cubic \sim \end{cases}$

11 2 Arithmetic with Polynomials
Let
$$f(x) = \sum_{i=0}^{n} a_i x^i$$
 $g(x) = \sum_{j=0}^{n} b_j x^j$ be plynomials over $F(x)$
-Addition
 $f(x) + g(x) = \sum_{i=0}^{n} (a_k + b_k) x^k$ $f(x) = a_{k=0}$
 $f(x) + g(x) = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i b_j x^{i+j} = \sum_{i=0}^{n} c_i x^i$
 $c_i = a_i b_i + \cdots + a_i b_0 = \sum_{i=0}^{n} a_i b_i = i$
- Degree of a product CPPD
 $\forall F \cdot f(x) & g(x) = deg f(x) + deg g(x)$
- Division Algorithm for Polynomials in $F(x)$. $g(x)$ non-zero
 $\exists uniput g(x) = f(x) + f(x) = f(x) + f(x) = f(x) =$

$$\chi^2$$
: $|=a$
 $\chi': o=-a+b$
 $\chi^o: b=-1$
for sub in χ' , $o=-2$ contradicts.
:- Statement is true

ex. Prove
$$(x-1)f(x^2+1)$$
 in $\mathbb{R}[x]$. Use pap to find $g(x) \& r(x)$
 $\& p_{\mathbb{R}}$ is:
 $x-1\int \frac{x+1}{x^2+0x+1}$
 $\frac{x^2-x}{x+1}$
 $\frac{x-1}{2}$
Synthetic $\frac{1}{1}\int \frac{1}{1}\int \frac{1}{1}\int$

€ ヤ 可 以 用 长 解 法

11.3 Polynomials
= Remainder Theorem (RT)

$$\forall F. \forall fix \in F(x]. \forall i \in F.
fxx \notin fix \in F(x]. \forall i \in F[x], i \in F.
fxx \notin fix = f(x) \notin f(x) \notin F[x], i \in F.
By DAP, there exist unique f(x), r(x) \notin F[x],
ist f(x) = g(x)(x-0) + r(x)
ulare r(x)=0, in dry(r(x)) = 0
is r(x) is constant is lot r(x)=ro where ro is constant F.
Thus f(x)=g(x)(x-c) + ro
shorther is constant of f(x)
ex. remainder is constant of f(x)
ex. remainder of f(x)=4x+2x+3 = (1x+6) is ?
By RT. remainder = f(-6)=-871
= foctor Theorem (FT)
 $\forall f(x) \in conglex polynomials. deg f(x)=21.$
 $\exists z \in C$, et. f(z)=0
= def. Reducible / Involutible
reducible plynomial : \overline{g} + \overline{g} \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} is involutible in $\overline{F}(x)$.$$

- df Miliplicity
The multiplicity of not c of plycomial for is the largest positive
integer, k. ct.
$$(x-c)^{k}$$
 is a fadur of for
as $h(x) = x^{e} + 2x^{k} + 1$. $= (x-i)^{e} (x+i)^{e}$
is $k = x^{e} + 2x^{k} + 1$. $= (x-i)^{e} (x+i)^{e}$
is $k = x^{e} + 2x^{k} + 1$. $= (x-i)^{e} (x+i)^{e}$
is $k = x^{e} + 2x^{k} + 1$. $= (x-i)^{e} (x+i)^{e}$
is $k = x^{e} + 2x^{k} + 1$. $= (x-i)^{e} (x+i)^{e}$
 $= i k = x^{e} + 2x^{k} + 1$. $= (x-i)^{e} (x+i)^{e}$
 $= i k = x^{e} + 2x^{k} + 1$. $= (x-i)^{e} (x+i)^{e}$
 $= i k = x^{e} + 2x^{e} + 1$. $= (x-i)^{e} (x+i)^{e}$
 $= i k = x^{e} + 2x^{e} + 1$. $= (x-i)^{e} (x+i)^{e}$
 $= i k = x^{e} + 2x^{e} + 1$. $= (x-i)^{e} (x+i)^{e} + 1$. $= (x-i)^{e} + 1$. $= (x-i)^{e} + 1$. $= (x+i)^{e} + 1$. $= (x+i)^{e$

$$S_{x}, \quad x = \frac{-(3-2i)\pm W}{2i}$$

$$w^{2} = (3-2i)^{2} - 4i(l-4) = 9 - 12i + 4i^{2} + 24i = 5 + 12i$$

$$w^{2} = (3+2i)^{2}$$

$$x = \frac{-(3-2i)\pm(3+2i)}{2i} \rightarrow x = \frac{4i}{2i} = 2$$

$$x = \frac{-6}{2i} = 3i$$

$$f(x) = i(x+1)(x-2)(x-3i) \qquad \leq \pi + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{$$